a2 United States Patent

Deshmukh et al.

US009098587B2

US 9,098,587 B2
Aug. 4, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

VARIABLE DURATION NON-EVENT
PATTERN MATCHING

Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

Inventors: Unmesh Anil Deshmukh, Nagpur (IN);
Anand Srinivasan, Bangalore (IN)

Assignee: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 144 days.

Appl. No.: 13/839,288

Filed: Mar. 15,2013

Prior Publication Data
US 2014/0201225 Al Jul. 17,2014

Related U.S. Application Data

Provisional application No. 61/752,855, filed on Jan.
15, 2013.

Int. Cl1.

GO6F 7/00 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC GO6F 17/30864 (2013.01); GOG6F 17/30286

(2013.01)
Field of Classification Search
CPC GOG6F 17/30516; GOGF 17/30864;
GOGF 17/30424; GOGF 17/30551
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,996,687 A 2/1991 Hess et al.
5,051,947 A 9/1991 Messenger et al.
5,495,600 A 2/1996 Terry et al.
5,706,494 A 1/1998 Cochrane et al.
5,802,262 A 9/1998 Van De Vanter
5,802,523 A 9/1998 Jasuja et al.
5,822,750 A 10/1998 Jou et al.
(Continued)
FOREIGN PATENT DOCUMENTS
EP 1241589 A2 9/2002
EP 2474922 7/2012
(Continued)
OTHER PUBLICATIONS
SQL Tutorial-In, Tizag.com, http://web.archive.org/web/

200902162152 19/http://www.tizag.com/sgiTutorial/sqlin.php, Feb.
16, 2009, pp. 1-3.

(Continued)

Primary Examiner — Tony Mahmoudi
Assistant Examiner — Tuan A Pham

(74) Attorney, Agent, or Firm — Kilpatrick Townsend and
Stockton LLP

57 ABSTRACT

Techniques for performing non-event pattern matching on
continuous event streams using variable duration. The dura-
tion value used in non-event pattern matching can be variable.
Accordingly, a first pattern match candidate can have a dif-
ferent associated duration from a second pattern match can-
didate for matches arising from events received via an event
stream. In certain embodiments, the duration for a candidate
pattern match may be based upon one or more attributes of an
event that started the candidate pattern match or based upon
an expression (e.g., an arithmetic expression) involving one
or more attributes of the event.

17 Claims, 8 Drawing Sheets

200
V.
START

RECEIVE EVENT

202

214

| OTHER EVENT-
RELATED PROCESSING

EVENT
STARTS AN ACTIVE
BINDING?

DETERMINE A DURATION FOR THE NEWLY STARTED
BINDING (POSSIBLY, BASED UPON A VALUE OF AN
ATTRIBUTE OF THE EVENT RECEVED IN 202)

208

I

DETERMINE A TARGET TIME (EXPIRATION TIME) FOR
THE ACTIVE BINDING BASED UPON THE DURATION

208

DETERMINED IN 206

l

ASSOCIATE THE TARGET TIME DETERMINED IN 208
WITH THE NEWLY STARTED ACTIVE BINDING

4|

)’\210

WAIT FOR NEXT EVENT

]

212

US 9,098,587 B2

Page 2

(56)

5,826,077
5,850,544
5,857,182
5,918,225
5,920,716
5,937,195
5,937,401
6,006,235
6,011,916
6,041,344
6,081,801
6,092,065
6,108,666
6,112,198
6,128,610
6,158,045
6,219,660
6,263,332
6,278,994
6,282,537
6,341,281
6,353,821
6,367,034
6,370,537
6,389,436
6,397,262
6,418,448
6,438,540
6,438,559
6,439,783
6,449,620
6,453,314
6,507,834
6,523,102
6,546,381
6,615,203
6,681,343
6,708,186
6,718,278
6,748,386
6,751,619
6,766,330
6,785,677
6,826,566
6,836,778
6,850,925
6,856,981
6,985,904
6,996,557
7,020,696
7,047,249
7,051,034
7,062,749
7,080,062
7,093,023
7,145,938
7,146,352
7,167,848
7,203,927
7,224,185
7,225,188
7,236,972
7,305,391
7,308,561
7,310,638
7,376,656
7,383,253
7,403,959
7,430,549
7,451,143
7,475,058
7,483,976
7,516,121
7,519,577
7,519,962

References Cited

U.S. PATENT DOCUMENTS

b S S i g g

10/1998
12/1998
1/1999
6/1999
7/1999
8/1999
8/1999
12/1999
1/2000
3/2000
6/2000
7/2000
8/2000
8/2000
10/2000
12/2000
4/2001
7/2001
8/2001
8/2001
1/2002
3/2002
4/2002
4/2002
5/2002
5/2002
7/2002
8/2002
8/2002
8/2002
9/2002
9/2002
1/2003
2/2003
4/2003
9/2003
1/2004
3/2004
4/2004
6/2004
6/2004
7/2004
8/2004
11/2004
12/2004
2/2005
2/2005
1/2006
2/2006
3/2006
5/2006
5/2006
6/2006
7/2006
8/2006
12/2006
12/2006
1/2007
4/2007
5/2007
5/2007
6/2007
12/2007
12/2007
12/2007
5/2008
6/2008
7/2008
9/2008
11/2008
1/2009
1/2009
4/2009
4/2009
4/2009

Blakeley et al.
Parvathaneny et al.
DeMichiel et al.
White et al.
Johnson et al.

Ju et al.

Hillegas et al.
Macdonald et al.
Moore et al.
Bodamer et al.
Cochrane et al.
Floratos et al.
Floratos et al.
Lohman et al.
Srinivasan et al.
You

Haderle et al.
Nasr et al.

Fuh et al.
Madnick et al.
MacNicol et al.
Gray et al.
Novik et al.
Gilbert et al.
Chakrabarti et al.
Hayden et al.
Sakar

Nasr et al.
White et al.
Antoshenkov
Draper et al.
Chan et al.
Kabra et al.

Dye et al.
Subramanian et al.
Lin et al.
Nakabo

Claborn et al.
Steggles

Li

Rowstron et al.
Chen et al.
Fritchman
Lewak et al.
Manikutty et al.
Chaudhuri et al.
Wyschogrod et al.
Kaluskar et al.
Leung et al.
Perry et al.
Vincent

Ghosh et al.

Cyr et al.

Leung et al.
Lockwood et al.
Takeuchi et al.
Brundage et al.
Boukouvalas et al.
Al-Azzawe et al.
Campbell et al.
Gai et al.

Lewak et al.
Wyschogrod et al.
Cornet et al.
Blair

Blakeley et al.
Tsimelzon et al.
Nishizawa et al.
Zane et al.
Sharangpani et al.
Kakivaya et al.
Ross

Liu et al.
Brundage et al.
Aman

7,533,087
7,546,284
7,552,365
7,567,953
7,580,946
7,587,383
7,603,674
7,613,848
7,620,851
7,630,982
7,634,501
7,636,703
7,644,066
7,653,645
7,672,964
7,673,065
7,676,461
7,689,622
7,693,891
7,702,629
7,702,639
7,711,782
7,716,210
7,739,265
7,805,445
7,814,111
7,823,066
7,827,146
7,827,190
7,844,829
7,870,124
7,877,381
7,895,187
7,912,853
7,917,299
7,930,322
7,945,540
7,953,728
7,954,109
7,979,420
7,987,204
7,988,817
7,991,766
7,996,388
8,019,747
8,032,544
8,046,747
8,073,826
8,099,400
8,103,655
8,122,006
8,134,184
8,145,859
8,155,880
8,195,648
8,204,873
8,204,875
8,290,776
8,296,316
8,315,990
8,316,012
8,321,450
8,346,511
8,352,517
8,386,466
8,387,076
8,392,402
8,447,744
8,458,175
8,498,956
8,521,867
8,527,458
8,543,558
8,572,589
8,589,436
8,676,841
8,713,049
8,762,369
8,775,412

5/2009
6/2009
6/2009
7/2009
8/2009
9/2009
10/2009
11/2009
11/2009
12/2009
12/2009
12/2009
1/2010
1/2010
3/2010
3/2010
3/2010
3/2010
4/2010
4/2010
4/2010
5/2010
5/2010
6/2010
9/2010
10/2010
10/2010
11/2010
11/2010
11/2010
1/2011
1/2011
2/2011
3/2011
3/2011
4/2011
5/2011
5/2011
5/2011
7/2011
7/2011
8/2011
8/2011
8/2011
9/2011
10/2011
10/2011
12/2011
1/2012
1/2012
2/2012
3/2012
3/2012
4/2012
6/2012
6/2012
6/2012
10/2012
10/2012
11/2012
11/2012
11/2012
1/2013
1/2013
2/2013
2/2013
3/2013
5/2013
6/2013
7/2013
82013
9/2013
9/2013
10/2013
11/2013
3/2014
4/2014
6/2014
7/2014

Liuet al.
Martinez et al.
Marsh et al.
Kadayam et al.
Mansour et al.
Koo et al.

Cyr et al.
Amini et al.
Leavy et al.
Boyce et al.
Yabloko

Taylor et al.
Krishnaprasad et al.
Stokes

Yan et al.
Srinivasan et al.
Chkodrov et al.
Liuet al.
Stokes et al.
Cytron et al.
Stanley et al.
Kim et al.
Ozcan et al.
Jain et al.
Boyer et al.
Levin
Kuramura

De Landstheer et al.
Pandya et al.
Meenakshisundaram
Liuet al.

Ewen et al.
Bowman
Agrawal
Buhler et al.
Maclennan
Park et al.

Hu et al.
Durham et al.
Jain et al.
Stokes

Son

Srinivasan et al.
Jain et al.
Srinivasan et al.
Jing et al.

Cyr et al.
Srinivasan et al.
Haub et al.
Srinivasan et al.
de Castro Alves et al.
Becker et al.
Park et al.

Patel et al.
Zabback et al.
Chavan
Srinivasan et al.
Moriwaki et al.
Jain et al.
Barga et al.
Abouzied et al.
Thatte et al.
Schoning et al.
Park et al.

Park et al.
Thatte et al.
Mihaila et al.
De Castro Alves et al.
Stokes
Srinivasan et al.
Srinivasan et al.
Park et al.
Srinivasan et al.
Cataldo et al.
Srinivasan et al.
Srinivasan et al.
Jain et al.
Macho et al.
Day et al.

US 9,098,587 B2

Page 3
(56) References Cited 2007/0050340 A1 3/2007 Von Kaenel et al.
2007/0076314 Al* 42007 Rigney ... 360/51
U.S. PATENT DOCUMENTS 2007/0118600 Al 5/2007 Arora
2007/0136239 Al 6/2007 Leeetal.

2002/0023211 Al 2/2002 Roth et al. 2007/0136254 Al 6/2007 Choi et al.
2002/0032804 Al 3/2002 Hunt 2007/0156964 Al 7/2007 Sistla
2002/0038313 Al 3/2002 Klein et al. 2007/0192301 Al 8/2007 Posner
2002/0049788 Al 4/2002 Lipkin 2007/0198479 Al 82007 Caietal.
2002/0116362 Al 8/2002 Lietal. 2007/0226188 Al 9/2007 Johnson et al.
2002/0116371 Al 8/2002 Dodds et al. 2007/0226239 Al 9/2007 Johnson et al.
2002/0133484 Al 9/2002 Chau et al. 2007/0271280 Al 11/2007 Chandasekaran
2002/0169788 Al 11/2002 Lee et al. 2007/0294217 Al 12/2007 Chen et al.
2003/0037048 Al 2/2003 Kabraetal. 2008/0005093 Al 172008 Liu et al.
2003/0046673 Al 3/2003 Copeland et al. 2008/0010093 Al 1/2008 LaPlante et al.
2003/0065655 Al 4/2003 Syeda-mahmood 2008/0010241 Al 1/2008 Mcgoveran
2003/0065659 Al 4/2003 Agarwal et al. 2008/0016095 Al 1/2008 Bhatnagar et al.
2003/0120682 Al 6/2003 Bestgen et al. 2008/0028095 Al 1/2008 Lang et al.
2003/0135304 Al 7/2003 Sroub et al. 2008/0033914 Al 2/2008 Cherniack et al.
2003/0200198 Al 10/2003 Chandrasekar et al. 2008/0034427 Al 2/2008 Cadambi et al.
2003/0229652 Al 12/2003 Bakalash et al. 2008/0046401 Al ~ 2/2008 Ieeetal.
2003/0236766 Al 12/2003 Fortuna et al. 2008/0071904 Al* 3/2008 Schubaetal. ... 709/224
2004/0010496 Al 1/2004 Behrendt et al. 2008/0077570 Al 3/2008 Tang etal.
2004/0019592 Al 1/2004 Crabtree 2008/0077587 Al 3/2008 Wyschogrod et al.
2004/0024773 Al 2/2004 Stoffel et al. 2008/0082484 Al 4/2008 Averbuch et al.
2004/0064466 Al 4/2004 Manikutty et al. 2008/0082514 Al 4/2008 Khorlin et al.
2004/0073534 Al 4/2004 Robson 2008/0086321 Al 4/2008 Walton
2004/0088404 Al 5/2004 Aggarwal 2008/0098359 Al 4/2008 Ivanov et al.
2004/0117359 Al 6/2004 Snodgrass et al. 2008/0110397 Al 52008 Son
2004/0136598 Al 7/2004 Le Leannec et al. 2008/0114787 Al 5/2008 Kashiyama et al.
2004/0151382 Al 8/2004 Stellenberg ot al. 2008/0120283 Al 5/2008 Liuet al.
2004/0153329 Al 8/2004 Casati et al. 2008/0120321 Al 5/2008 Liuetal.
2004/0167864 Al 8/2004 Wang et al. 2008/0162583 Al 7/2008 Brown et al.
2004/0168107 Al 8/2004 Sharp et al. 2008/0195577 Al 8/2008 Fan et al.
2004/0177053 Al 9/2004 Donoho et al. 2008/0235298 Al 9/2008 Lin et al.
2004/0201612 Al 10/2004 Hild et al. 2008/0243451 Al 10/2008 Feblowitz et al.
2004/0205082 Al 10/2004 Fontoura et al. 2008/0243675 Al 10/2008 Parsons et al.
2004/0220896 Al 11/2004 Finlay et al. 2008/0250073 Al 10/2008 Nori et al.
2004/0220912 A1 11/2004 Manikutty et al. 2008/0255847 Al 10/2008 Moriwaki et al.
2004/0220927 Al 11/2004 Murthy et al. 2008/0263039 Al 10/2008 Van Lunteren
2004/0267760 Al 12/2004 Brundage et al. 2008/0270764 Al 10/2008 McMillen et al.
2004/0268314 Al 12/2004 Kollman et al. 2008/0281782 Al 11/2008 Agrawal
2005/0010896 Al 1/2005 Meliksetian et al. 2008/0301124 Al 12/2008 Alves et al.
2005/0055338 Al 3/2005 Warner et al. 2008/0301125 Al 12/2008 Alves et al.
2005/0065949 Al 3/2005 Warner et al. 2008/0301135 Al 12/2008 Alves et al.
2005/0096124 Al 5/2005 Stronach 2008/0301256 Al 12/2008 Mcwilliams et al.
2005/0097128 Al 5/2005 Ryan et al. 2008/0313131 Al 12/2008 Friedman et al.
2005/0120016 Al 6/2005 Midgley 2009/0006320 Al 1/2009 Ding et al.
2005/0154740 Al 7/2005 Day et al. 2009/0006346 Al 1/2009 CN etal.
2005/0174940 Al 8/2005 Iny 2009/0007098 Al 1/2009 Chevrette et al.
2005/0177579 Al 82005 Blakeley et al. 2009/0019045 Al 1/2009 Amir et al.
2005/0204340 Al 9/2005 Ruminer et al. 2009/0024622 Al 1/2009 Chkodrov et al.
2005/0229158 Al 10/2005 Thusoo et al. 2009/0043729 Al 2/2009 Liu et al.
2005/0273450 Al 12/2005 McMillen et al. 2009/0070355 Al 3/2009 Cadarette et al.
2005/0289125 Al 12/2005 Liu et al. 2009/0070785 Al 3/2009 Alvez et al.
2006/0007308 Al 1/2006 Ide et al. 2009/0070786 Al 3/2009 Alves et al.
2006/0015482 Al 1/2006 Beyer et al. 2009/0076899 Al 3/2009 Gbodimowo
2006/0031204 Al 2/2006 Liu et al. 2009/0088962 Al 4/2009 Jones
2006/0047696 Al 3/2006 Larson et al. 2009/0100029 Al 4/2009 Jain et al.
2006/0064487 Al 3/2006 Ross 2009/0106189 Al 4/2009 Jain et al.
2006/0080646 Al 4/2006 Aman 2009/0106190 Al 4/2009 Srinivasan et al.
2006/0085592 Al 4/2006 Ganguly et al. 2009/0106198 Al 4/2009 Srinivasan et al.
2006/0089939 Al 4/2006 Broda et al. 2009/0106214 Al 4/2009 Jain et al.
2006/0100969 Al 5/2006 Wang et al. 2009/0106215 Al 4/2009 Jain et al.
2006/0106786 Al 5/2006 Day et al. 2009/0106218 Al 4/2009 Srinivasan et al.
2006/0106797 Al 5/2006 Srinivasa et al. 2009/0106321 Al 4/2009 Das et al.
2006/0129554 Al* 6/2006 Suyamaetal. 707/6 2009/0106440 Al 4/2009 Srinivasan et al.
2006/0155719 Al 7/2006 Mihaeli et al. 2009/0112802 Al 4/2009 Srinivasan et al.
2006/0167704 Al 7/2006 Nicholls et al. 2009/0112803 Al 4/2009 Srinivasan et al.
2006/0167856 Al 7/2006 Angele et al. 2009/0112853 Al 4/2009 Nishizawa et al.
2006/0212441 Al 9/2006 Tang et al. 2009/0125550 Al 5/2009 Barga et al.
2006/0224576 Al 10/2006 Liu et al. 2009/0144696 Al 6/2009 Andersen
2006/0230029 Al 10/2006 Yan 2009/0172014 Al 7/2009 Huetter
2006/0235840 Al 10/2006 Manikutty et al. 2009/0187584 Al 7/2009 Johnson et al.
2006/0242180 Al 10/2006 Grafet al. 2009/0216747 Al 8/2009 Lietal.
2006/0282429 Al 12/2006 Hernandez-Sherrington et al. 2009/0216860 Al 8/2009 Lietal.
2006/0294095 Al 12/2006 Berk etal. 2009/0228434 Al 9/2009 Krishnamurthy et al.
2007/0016467 Al 1/2007 John et al. 2009/0245236 Al 10/2009 Scott et al.
2007/0022092 Al 1/2007 Nishizawa et al. 2009/0248749 Al 10/2009 Gu etal.
2007/0039049 Al 2/2007 Kupferman et al. 2009/0254522 Al 10/2009 Chaudhuri et al.

US 9,098,587 B2
Page 4

(56)

2009/0257314
2009/0265324
2009/0293046
2009/0300093
2009/0300181
2009/0300580
2009/0300615
2009/0313198
2009/0327102
2010/0017379
2010/0017380
2010/0023498
2010/0036831
2010/0049710
2010/0057663
2010/0057727
2010/0057735
2010/0057736
2010/0057737
2010/0094838
2010/0106946
2010/0125584
2010/0161589
2010/0223305
2010/0223437
2010/0223606
2010/0312756
2010/0318652
2011/0004621
2011/0016160
2011/0022618
2011/0023055
2011/0029484
2011/0029485
2011/0040746
2011/0055192
2011/0055197
2011/0093162
2011/0105857
2011/0161321
2011/0161328
2011/0161352
2011/0161356
2011/0161397
2011/0173231
2011/0173235
2011/0196891
2011/0270879
2011/0302164
2011/0314019
2011/0321057
2012/0041934
2012/0072455
2012/0130963
2012/0166421
2012/0166469
2012/0191697
2012/0233107
2012/0259910
2012/0278473
2012/0284420
2012/0290715
2012/0291049
2012/0324453
2013/0014088
2013/0046725
2013/0117317
2013/0144866
2013/0191370
2013/0332240
2014/0095444
2014/0095445
2014/0095446
2014/0095447
2014/0095462

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

10/2009
10/2009
11/2009
12/2009
12/2009
12/2009
12/2009
12/2009
12/2009
1/2010
1/2010
1/2010
2/2010
2/2010
3/2010
3/2010
3/2010
3/2010
3/2010
4/2010
4/2010
5/2010
6/2010
9/2010
9/2010
9/2010
12/2010
12/2010
1/2011
1/2011
1/2011
1/2011
2/2011
2/2011
2/2011
3/2011
3/2011
4/2011
5/2011
6/2011
6/2011
6/2011
6/2011
6/2011
7/2011
7/2011
8/2011
11/2011
12/2011
12/2011
12/2011
2/2012
3/2012
5/2012
6/2012
6/2012
7/2012
9/2012
10/2012
11/2012
11/2012
11/2012
11/2012
12/2012
1/2013
2/2013
5/2013
6/2013
7/2013
12/2013
4/2014
4/2014
4/2014
4/2014
4/2014

Davis et al.

Mordvinov et al.

Cheriton

Griffiths et al.

Marques

Heyhoe et al.

Andrade et al.

Kudo

Maniar et al.

Naibo et al.

Naibo et al.

Dettinger et al.

Vemuri et al.

Young, Jr. et al.

Srinivasan et al.

Srinivasan et al.

Srinivasan et al.

Srinivasan et al.

Srinivasan et al. 707/6
Kozak

Imaki et al.
Navas

Nica et al.
Park et al.
Park et al.
Park et al.
Zhang et al.
Samba

Kelley et al.
Zhang et al.
Thatte et al.
Thatte et al.
Park et al.
Park et al.
Handa et al.
Tang et al.
Chavan
Nielsen et al.
Zhang et al. ...
De Castro et al.
Park et al.

De Castro et al.
De Castro et al.
Bekiares et al.
Drissi et al.
Aman et al.
De Castro et al.
Srinivasan et al.
Krishnamurthy et al.
Jimenez Peris et al.
Mejdrich et al.
Srinivasan et al.
Jain et al.

Luo et al.

Cammert et al.
Cammert et al.
Sherman et al.
Roesch et al.
Andrade et al.
Griffiths

Shukla et al.
Dinger et al.

Park et al.
Chandramouli et al.
Park et al.
Cammert et al.
Wolf

Jerzak et al.

Chen et al.

Patri et al.
Deshmukh et al.
Deshmukh et al.
Deshmukh et al.
Deshmukh et al.
Park et al.

600/300

2014/0095471 Al
2014/0095473 Al

4/2014
4/2014

Deshmukh et al.
Srinivasan et al.

2014/0095483 Al 4/2014 Toillion et al.
2014/0095525 Al 4/2014 Hsiao et al.
2014/0095529 Al 4/2014 Deshmukh et al.
2014/0095533 Al 4/2014 Shukla et al.
2014/0095535 Al 4/2014 Deshmukh et al.
2014/0095537 Al 4/2014 Park et al.
2014/0095540 Al 4/2014 Hsiao et al.
2014/0095541 Al 4/2014 Herwadkar et al.
2014/0095543 Al 4/2014 Hsiao et al.
2014/0136514 Al 5/2014 Jain et al.
2014/0156683 Al 6/2014 de Castro Alves
2014/0172914 Al 6/2014 Elnikety et al.
2014/0201355 Al 7/2014 Bishnoi et al.
2014/0236983 Al 8/2014 Alves et al.
2014/0237289 Al 8/2014 de Castro Alves et al.

2014/0358959 Al
2014/0379712 Al

12/2014
12/2014

Bishnoi et al.
Lafuente Alvarez

FOREIGN PATENT DOCUMENTS

WO 00/49533 A2 8/2000
WO WO01/18712 Al 3/2001
WO 01/59602 Al 8/2001
WO 01/65418 Al 9/2001
WO 03/030031 A2 4/2003
WO WO02007122347 11/2007
WO 2012/037511 Al 3/2012
WO 2012050582 4/2012
WO 2012/154408 A1 11/2012
WO 2012158360 Al 11/2012
OTHER PUBLICATIONS

U.S. Appl. No. 12/548,187, Final Office Action, dated Jun. 10, 2013,

18 pages.

U.S. Appl. No. 12/548,222, Notice of Allowance, dated Jul. 18,2013,

12 pages.

U.S. Appl. No. 13/102,665, Final Office Action, dated Jul. 9, 2013, 17
ages.

U.S. Appl. No. 13/107,742, Final Office Action, dated Jul. 3, 2013, 19

pages.

Notice of Allowance for U.S. Appl. No. 11/977,437 dated Jul. 10,

2013, 10 pages.

Final Office Action for U.S. Appl. No. 12/548,281 dated Oct. 10,

2013, 21 pages.

Notice of Allowance for U.S. Appl. No. 12/548,290 dated Sep. 11,

2013, 6 pages.

Final Office Action for U.S. Appl. No. 13/089,556 dated Aug. 29,

2013, 10 pages.

Final Office Action for U.S. Appl. No. 12/949,081 dated Aug. 27,

2013, 12 pages.

Notice of Allowance for U.S. Appl. No. 13/193,377 dated Aug. 30,

2013, 18 pages.

Non-Final Office Action for U.S. Appl. No. 13/177,748 dated Aug.

30, 2013, 23 pages.

“Supply Chain Event Management: Real-Time Supply Chain Event

Management,” product information Manhattan Associates (copy-

right 2009-2012) one page.

Fantozzi “A Strategic Approach to Supply Chain Event Manage-

ment,” student submission for Masters Degree, Massachusetts Insti-

tute of Technology (Jun. 2003) 36 pages.

Oracle™ Complex Event Processing CQL Language Reference, 11g

Release 1 (11.1.1.4.0) E12048-04,(Jan. 2011), pp. title page, iii-

xxxviil, 1-1to 4-26, 6-1 to 6-12, 18-1 to 20-26, Index-1 to Index-14.

U.S. Appl. No. 13/838,259, filed Mar. 15, 2013, Deshmukh et al.

Oracle™ Complex Event Processing CQL Language Reference, 11g

Release 1 (11.1.1) E12048-03, (Apr. 2010) pp. 18-1 to 18.9.5.

Oracle™ Fusion Middleware CQL Language Reference, ll1g

Release 1 (11.1.1.6.3) E12048-10, (Aug. 2012) pp. title page, iii-

xxxvi, 1-1 to 4-26, 6-1 to 6-12, 18-1 to 20-26, Index-1 to Index-14.

Pradhan “Implementing and Configuring SAP® Event Manage-

ment” Galileo Press, pp. 17-21 (copyright 2010).

US 9,098,587 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Wilson “SAP Event Management, an Overview,” Q Data USA, Inc.(
copyright 2009) 16 pages.

Oracle Application Server, Enterprise Deployment Guide, 10g
Release 3 (10.1.3.2.0), B32125-02, Oracle, Apr. 2007, 120 pages.
Oracle Database, SQL Language Reference 11 g Release 1 (11.1),
B28286-02, Oracle, Sep. 2007, 1496 pages.

Esper Reference Documentation, Copyright 2007, Ver. 1.12.0, 2007,
158 pages.

Stream Query Repository: Online Auctions, at URL: http://www-db.
stanford.edw/stream/sqr/onauc.html#queryspecsend, Dec. 2, 2002, 2
pages.

Esper Reference Documentation, Copyright 2008, ver. 2.0.0, 2008,
202 pages.

Oracle Database Data Cartridge Developer’s Guide, B28425-03, 11
g Release 1 (11.1), Oracle, Mar. 2008, 372 pages.

Oracle Application Server, Administrator’s Guide, 10g Release 3
(10.1.3.2.0), B32196-01, Oracle., Jan. 2007, 376 pages.

Oracle Application Server 10g, Release 2 and 3, New Features Over-
view, An Oracle White Paper, Oracle., Oct. 2005, 48 pages.

Oracle Database, SQL Reference, 10g Release 1 (10.1), Part No.
B10759-01, Dec. 2003, pp. 7-1 to 7-17; 7-287 to 7-290; 14-61 to
14-74.

Business Process Management (BPM), Datasheet [online]. IBM,
[retrieved on Jan. 28, 2013]. Retrieved from the Internet: <URL:
http://www-142.ibm.com/software/products/us/en/category/BPM-
SOFTWARE>.

Complex Event Processing in the Real World, An Oracle White
Paper., Sep. 2007, 13 pages.

Coral8 Complex Event Processing Technology Overview, Coral8,
Inc., Make it Continuous, Copyright 2007 Coral8, Inc., 2007, pp. 1-8.
“Creating WebLogic Domains Using the Configuration Wizard.”,
BEA Products, Version. 10.0, Dec. 2007, 78.

“Creating Weblogic Event Server Applications.”, BEA WebLogic
Event Server, Version. 2.0, Jul. 2007, 90 pages.

Dependency Injection, Wikipedia, printed on Apr. 29, 2011, at URL:
D http:en.wikipedia.org/w/index.php?title=DependencLinjection
&01did=260831402,, Dec. 30, 2008, pp. 1-7.

Deploying Applications to WebLogic Server, BEA WebLogic Server,
ver. D 10.0, Mar. 30, 2007, 164 pages.

Developing Applications with Weblogic Server, BEA WebLogic
Server, ver. D 10.0, Mar. 30, 2007, 254 pages.

EPL Reference, BEA WebLogic Event Server, ver. 2.0, Jul. 2007, 82
pages.

Esper Reference Documentation Version 3.1.0, EsperTech, retrieved
from internet at URL: http://esper.codehaus.org/esper-3.1.0/doc/ref-
erence/en/pdf/esper_reference.pdf, 2009, 293 pages.

Fast Track Deployment and Administrator Guide for BEA WebLogic
Server, BEA WebLogic Server 10.0 Documentation, printed on May
10, 2010, at URL:http://download.oracle.com/docs/cd/E13222_ 01
/wls/docs1 OO/quickstart/quick_ start. html, May 10, 2010, 1page.
Getting Started with WebLogic Event Server, BEA WebLogic Event
Serverver 2.0, Jul. 2007, 66 pages.

High Availability Guide, Oracle Application Server, 10g Release 3
(10.1.3.2.0), B32201-01, Jan. 2007, 314 pages.

Installing Weblogic Real Time, BEA WebLogic Real Time, Ver. 2.0,
Jul. 2007, 64 pages.

Introduction to BEA WebLogic Server and BEA WebLogic Express,
BEA WebLogic Server, Ver. 10.0, Mar. 2007, 34 pages.
Introduction to WebLogic Real Time, BEA WebLogic Real Time,
ver. 2.0,, Jul. 2007, 20 pages.

Jboss Enterprise Application Platform 4.3 Getting Started Guide
CPO03, for Use with Jboss Enterprise Application Platform 4.3 Cumu-
lative Patch 3, Jboss a division of Red Hat, Red Hat Documentation
Group, Copyright 2008, Red Hat, Inc., Sep. 2007, 68 pages.
Managing Server Startup and Shutdown, BEA WebLogic Server, ver.
10.0, Mar. 30, 2007, 134 pages.

Matching Behavior, .Net Framework Developer’s Guide, Microsoft
Corporation, Retrieved on: Jul. 1, 2008, URL: http://msdn.microsoft.
com/en-us/library/Oyzc2ybO(pri nter).aspx, 2008, pp. 1-2.

New Project Proposal for Row Pattern Recognition—Amendment to
SQL with Application to Streaming Data Queries, H2-2008-027, H2
Teleconference Meeting, Jan. 9, 2008, pp. 1-6.

Oracle CEP Getting Started, Release 11 gR1 (11.1.1) E14476-01,
May 2009, 172 pages.

Oracle Complex Event Processing CQL Language Reference, 11g
Release 1 (11.1.1) E12048-01, Apr. 2010, 540 pages.

OSGI Service Platform Core Specification, The OSGI Alliance,
OSGI Alliance, ver. 4.1, release 4, Apr. 2007, 288 pages.

Release Notes, BEA WebLogic Event Server, Ver. 2.0, Jul. 2007, 8
pages.

Spring Dynamic Modules for OSGi Service Platforms product docu-
mentation, SpringSource, D, Jan. 2008, 71 pages.

Stream Base New and Noteworthy, Stream Base, Jan. 1, 2010, 878
pages.

Stream: The Stanford Stream Data Manager, IEEE Data Engineering
Bulletin., Mar. 2003, pp. 1-8.

Stream: The Stanford Stream Data Manager, Retrieved from: URL:
http://infolab.stanford.edu/stream/, Jan. 5, 2006, pp. 1-9.
Understanding Domain Configuration, BEA WebLogic Server, Ver.
10.0, Mar. 30, 2007, 38 pages.

WebLogic Event Server Administration and Configuration Guide,
BEA WebLogic Event D Server, Version. 2.0, Jul. 2007, 108 pages.
WebLogic Event Server Reference, BEA WebLogic Event Server,
Version. 2.0, Jul. 2007, 52 pages.

Weblogic Server Performance and Tuning, BEA WebLogic Server,
Ver. 10.0, Mar. 30, 2007, 180 pages.

WebSphere Application Server V6.1 Problem Determination: IBM
Redpaper Collection, WebSphere Software, IBM/Redbooks, Dec.
2007, 634 pages.

‘What is BPM?, Datasheet [online]. IBM, [retrieved on Jan. 28, 2013].
Retrieved from the Internet: <URL: http://www-01.ibm.com/soft-
ware/info/bpm/whatis-bpm/>.

U.S. Appl. No. 10/948,523, Final Office Action mailed on Jul. 6,
2007, 5 pages.

U.S. Appl. No. 10/948,523, Non-Final Office Action mailed on Dec.
11, 2007, 48 pages.

U.S. Appl. No. 10/948,523, Notice of Allowance mailed on Dec. 1,
2010, 15 pages.

U.S. Appl. No. 10/948,523, Notice of Allowance mailed on Jul. 8,
2008, 30 pages.

U.S. Appl. No. 10/948,523, Non-Final Office Action mailed on Jan.
22, 200731 pages.

U.S. Appl. No. 10/948,523, Supplemental Notice of Allowance
mailed on Jul. 17, 2008, 17 pages.

U.S. Appl. No. 10/948,523, Supplemental Notice of Allowance
mailed on Aug. 25, 2008, 3 pages.

U.S. Appl. No. 11/601,415, Final Office Action mailed on Jul. 2,
2012, 59 pages.

U.S. Appl. No. 11/601,415, Final Office Action mailed on May 27,
2009, 27 pages.

U.S. Appl. No. 11/601,415, Final Office Action mailed on Jun. 30,
2010, 45 pages.

U.S. Appl. No. 11/601,415, Non-Final Office Action mailed on Sep.
17, 2008, 10 pages.

U.S. Appl. No. 11/601,415, Non-Final Office Action mailed on Nov.
30, 2009, 32 pages.

U.S. Appl. No. 11/601,415, Office Action mailed on Dec. 9, 2011.
U.S. Appl. No. 11/873,407, Final Office Action mailed on Apr. 26,
2010, 11 pages.

U.S. Appl. No. 11/873,407, Non-Final Office Action Nov. 13, 2009,
7 pages.

U.S. Appl. No. 11/873,407, Notice of Allowance mailed on Nov. 10,
2010, 14 pages.

U.S. Appl. No. 11/873,407, Notice of Allowance mailed on Mar. 7,
2011, 8 pages.

U.S. Appl. No. 11/874,197, Final Office Action mailed on mailed on
Aug. 12, 2011, 26 pages.

U.S. Appl. No. 11/874,197, Final Office Action mailed on Jun. 29,
2010, 17 pages.

U.S. Appl. No. 11/874,197, Non-Final Office Action mailed on Dec.
22,2010, 22 pages.

US 9,098,587 B2
Page 6

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 11/874,197, Office Action mailed on Nov. 10, 2009,
14 pages.

U.S. Appl. No. 11/874,202, Final Office Action mailed on Jun. 8,
2010, 200 pages.

U.S. Appl. No. 11/874,202, Non-Final Office Action mailed on Dec.
3, 2009, 20 pages.

U.S. Appl. No. 11/874,202, Notice of Allowance mailed on Mar. 31,
2011, 12 pages.

U.S. Appl. No. 11/874,202, Notice of Allowance mailed on Dec. 22,
2010, 29 pages.

U.S. Appl. No. 11/874,850, Notice of Allowance mailed on Jan. 27,
2010, 11 pages.

U.S. Appl. No. 11/874,850, Notice of Allowance mailed on Nov. 24,
2009, 17 pages.

U.S. Appl. No. 11/874,850, Notice of Allowance mailed on Dec. 11,
2009, 5 pages.

U.S. Appl. No. 11/874,896, Final Office Action mailed on Jul. 23,
2010, 28 pages.

U.S. Appl. No. 11/874,896, Non-Final Office Action mailed on Dec.
8, 2009, 19 pages.

U.S. Appl. No. 11/874,896, Non-Final Office Action mailed on Nov.
22,2010, 25 pages.

U.S. Appl. No. 11/874,896, Notice of Allowance mailed on Jun. 23,
2011, 30 pages.

U.S. Appl. No. 11/927,681, Non-Final Office Action mailed on Mar.
24,2011, 17 pages.

U.S. Appl. No. 11/927,681, Notice of Allowance mailed on Jul. 1,
2011, 8 pages.

U.S. Appl. No. 11/927,683, Final Office Action mailed on Sep. 1,
2011, 18 pages.

U.S. Appl. No. 11/927,683, Non-Final Office Action mailed on Mar.
24,2011, 13 pages.

U.S. Appl. No. 11/927,683, Notice of Allowance mailed on Nov. 9,
2011, 10 pages.

U.S. Appl. No. 11/977,437, Final Office Action mailed on Apr. 8,
2010, 18 pages.

U.S. Appl. No. 11/977,437, Non-Final Office Action mailed on Oct.
13, 2009, 9 pages.

U.S. Appl. No. 11/977,437, Notice of Allowance mailed on Mar. 4,
2013, 9 pages.

U.S. Appl. No. 11/977,437, Office Action mailed on Aug. 3,2012, 17
pages.

U.S. Appl. No. 11/977,439, Non-Final Office Action mailed on Apr.
13, 2010, 7 pages.

U.S. Appl. No. 11/977,439, Notice of Allowance mailed on Mar. 16,
2011, 10 pages.

U.S. Appl. No. 11/977,439, Notice of Allowance mailed on Aug. 18,
2010, 11 pages.

U.S. Appl. No. 11/977,439, Notice of Allowance mailed on Sep. 28,
2010, 6 pages.

U.S. Appl. No. 11/977,439, Notice of Allowance mailed on Nov. 24,
2010, 8 pages.

U.S. Appl. No. 11/977,440, Notice of Allowance mailed on Oct. 7,
2009, 6 pages.

U.S. Appl. No. 12/193,377, Final Office Action mailed on Jan. 17,
2013, 24 pages.

U.S. Appl. No. 12/395,871, Non-Final Office Action mailed on May
27,2011, 7 pages.

U.S. Appl. No. 12/395,871, Notice of Allowance mailed on Apr.
2012, 27 pages.

U.S. Appl. No. 12/395,871, Office Action mailed on Oct. 9,2011,33
pages.

U.S. Appl. No. 12/396,008, Non-Final Office Action mailed on Jun.
8,2011, 10 pages.

U.S. Appl. No. 12/396,008, Notice of Allowance mailed on Nov. 16,
2011, 5 pages.

U.S. Appl. No. 12/396,464, Final Office Action mailed on Jan. 16,
2013, 17 pages.

U.S. Appl. No. 12/396,464, Non-Final Office Action mailed on Sep.
7,2012, 18 pages.

U.S. Appl. No. 12/506,891, Notice of Allowance Jul. 25, 2012, 8
pages.

U.S. Appl. No. 12/506,891, Office Action mailed on Dec. 14, 2011,
41 pages.

U.S. Appl. No. 12/506,905, Notice of Allowance mailed on Dec. 14,
2012, 15 pages.

U.S. Appl. No. 12/506,905, Office Action mailed on Aug. 9, 2012, 42
pages.

U.S. Appl. No. 12/506,905, Office Action mailed on Mar. 26, 2012,
61 pages.

U.S. Appl. No. 12/534,384, Notice of Allowance mailed on May 7,
2013, 12 pages.

U.S. Appl. No. 12/534,384, Non-Final Office Action mailed on Feb.
28, 2012, 13 pages.

U.S. Appl. No. 12/534,384, Final Office Action mailed on Feb. 12,
2013, 14 pages.

U.S. Appl. No. 12/534,398, Final Office Action mailed on Jun. 5,
2012, 27 pages.

U.S. Appl. No. 12/534,398, Notice of Allowance mailed on Nov. 27,
2012, 10 pages.

U.S. Appl. No. 12/534,398, Non-Final Office Action mailed on Nov.
1,2011, 15 pages.

U.S. Appl. No. 12/548,187, Non Final Office Action mailed on Sep.
27,2011, 19 pages.

U.S. Appl. No. 12/548,187, Non-Final Office Action mailed on Apr.
9, 2013, 17 pages.

U.S. Appl. No. 12/548,187, Final Office Action mailed on Jun. 20,
2012, 22 pages.

U.S. Appl. No. 12/548,209, Notice of Allowance mailed on Oct. 24,
2012, 22 pages.

U.S. Appl. No. 12/548,209, Office Action mailed on Apr. 16,2012, 40
pages.

U.S. Appl. No. 12/548,222, Non-Final Office Action mailed on Apr.
10, 2013, 16 pages.

U.S. Appl. No. 12/548,222, Non-Final Office Action mailed on Oct.
19, 2011, 19 pages.

U.S. Appl. No. 12/548,222, Office Action mailed on Jun. 20,2012, 29
pages.

U.S. Appl. No. 12/548,281, Non-Final Office Action mailed on Apr.
12, 2013, 16 pages.

U.S. Appl. No. 12/548,281, Non-Final Office Action mailed on Oct.
3, 2011, 20 pages.

U.S. Appl. No. 12/548,281, Office Action mailed on Jun. 20,2012, 29
pages.

U.S. Appl. No. 12/548,290, Final Office Action mailed on Jul. 30,
2012, 34 pages.

U.S. Appl. No. 12/548,290, Non-Final Office Action mailed on Oct.
3,2011, 17 pages.

U.S. Appl. No. 12/548,290, Non-Final Office Action mailed on Apr.
15, 2013, 17 pages.

U.S. Appl. No. 12/874,197, Notice of Allowance mailed on Jun. 22,
2012.

U.S. Appl. No. 12/913,636, Final Office Action mailed on Jan. 8,
2013, 21 pages.

U.S. Appl. No. 12/913,636, Non-Final Office Action mailed on Jun.
7,2012, 16 pages.

U.S. Appl. No. 12/949,081, Non-Final Office Action mailed on Jan.
9, 2013, 12 pages.

U.S. Appl. No. 12/957,194, Non-Final Office Action mailed on Dec.
7,2012, 11 pages.

U.S. Appl. No. 12/957,194, Notice of Allowance mailed on Mar. 20,
2013, 9 pages.

U.S. Appl. No. 12/957,201, Final Office Action mailed on Apr. 25,
2013, 11 pages.

U.S. Appl. No. 12/957,201, Office Action mailed on Dec. 19, 2012,
15 pages.

U.S. Appl. No. 13/089,556, Non-Final Office Action mailed on Apr.
10, 2013, 10 pages.

U.S. Appl. No. 13/089,556, Office Action mailed on Nov. 6, 2012, 13
pages.

US 9,098,587 B2
Page 7

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 13/102,665, Office Action mailed on Feb. 1, 2013, 14
pages.

U.S. Appl. No. 13/107,742, Non-Final Office Action mailed on Feb.
14, 2013, 16 pages.

U.S. Appl. No. 13/184,528, Notice of Allowance mailed on Mar. 1,
2012.

U.S. Appl. No. 13/193,377, Office Action mailed on Jan. 17,2013, 25
pages.

U.S. Appl. No. 13/193,377, Office Action mailed on Aug. 23, 2012,
48 pages.

U.S. Appl. No. 13/244,272, Final Office Action mailed on Mar. 28,
2013, 29 pages.

U.S. Appl. No. 13/244,272, Non-Final Office Action mailed on Oct.
4, 2012, 30 pages.

U.S. Appl. No. 13/396,464, Office Action mailed on Sep. 7, 2012.
Abadi, et al., Aurora: A Data Stream Management System, Interna-
tional Conference on Management of Data, Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data,
2003, 4 pages.

Aho, et al., Efficient String Matching: An Aid to Bibliographic
Search, Communications of the ACM, vol. 18, No. 6, Association for
Computing Machinery, Inc., Jun. 1975, pp. 333-340.

Arasu, et al., An Abstract Semantics and Concrete Language for
Continuous Queries over Streams and Relations, 9th International
Workshop on Database programming languages, Sep. 2003, 11
pages.

Arasu, et al., An Abstract Semantics and Concrete Language for
Continuous Queries over Streams and Relations, 9th International
Workshop on Database programming languages, Sep. 2003, 12
pages.

Arasu, et al., CQL: A language for Continuous Queries over Streams
and Relations, Lecture Notes in Computer Science vol. 2921, 2004,
pp. 1-19.

Arasu, et al., STREAM: The Stanford Data Stream Management
System, Department of Computer Science, Stanford University,
2004, p. 21.

Arasu, et al., The CQL Continuous Query Language: Semantic Foun-
dations and Query Execution, Stanford University, The VLDB Jour-
nal—The International Journal on Very Large Data Bases, vol. 15,
No. 2, Springer-Verlag New York, Inc., Jun. 2006, pp. 1-32.

Avnur, et al., Eddies: Continuously Adaptive Query Processing, In
Proceedings ofthe 2000 ACM SIGMOD International Conference on
Data, Dallas TX, May 2000, 12 pages.

Avnur, et al., Eddies: Continuously Adaptive Query Processing, slide
show, believed to be prior to Oct. 17, 2007, 4 pages.

Babcock et al., Models and Issues in Data Streams, Proceedings of
the 21st ACM SIGMOD-SIGACT-SIDART symposium on Prin-
ciples of database systems, 2002, 30 pages.

Babu, et al., Continuous Queries over Data Streams, SIGMOD
Record, vol. 30, No. 3, Sep. 2001, pp. 109-120.

Bai, et al., A Data Stream Language and System Designed for Power
and Extensibility, Conference on Information and Knowledge Man-
agement, Proceedings of the 15th ACM D International Conference
on Information and Knowledge Management, Arlington, Virginia,
Copyright 2006, ACM Press., Conference on Information and
Knowledge Management, Proceedings of the 15th ACM D Interna-
tional Conference on Information and Knowledge Management,
Arlington, Virginia, Copyright 2006, ACM Press., Nov. 5-11, 2006,
10 pages.

Bose, et al., A Query Algebra for Fragmented XML Stream Data, 9th
International Conference on Data Base Programming Languages
(DBPL), Sep. 2003, 11 pages.

Buza, Extension of CQL over Dynamic Databases, Journal of Uni-
versal Computer Science, vol. 12, No. 9, Sep. 28, 2006, pp. 1165-
1176.

Carpenter, User Defined Functions, Retrieved from: URL: http://
www.sqlteam.comitemprint.asp?ItemID=979, Oct. 12, 2000, 4

pages.

Chan, et al., Efficient Filtering of XML documents with Xpath
expressions, VLDB Journal D, 2002, pp. 354-379.

Chandrasekaran, et al., TelegraphCQ: Continuous Dataflow Process-
ing for an Uncertain World, Proceedings of CIDR, 2003, 12 pages.
Chen, et al., NiagaraCQ: A Scalable Continuous Query System for
Internet Databases, Proceedings of the 2000 SIGMOD International
Conference on Management of Data., May 2000, 379-390 pages.
Colyer, et al., Spring Dynamic Modules Reference Guide, Copyright,
ver. 1.0.3, 2006-2008, 73 pages.

Colyer, et al., Spring Dynamic Modules Reference Guide, Ver. 1.1.3,
2006-2008, 96 pages.

Conway, An Introduction to Data Stream Query Processing, Truviso,
Inc., URL: http://neilconway.org/talks/streamjntro.pdf, May 24,
2007, 71 pages.

Demers, et al., Towards Expressive Publish/Subscribe Systems, Pro-
ceedings of the 10th International Conference on Extending Data-
base Technology (EDBT 2006),Munich, Germany, Mar. 2006, pp.
1-18.

Demichiel, et al., JSR 220: Enterprise JavaBeans™, EJB 3.0 Simpli-
fied APIL, EJB 3.0 Expert Group, Sun Microsystems, Ver. 3.0, May 2,
2006, 59 pages.

Deshpande, et al., Adaptive Query Processing, Slide show believed to
be prior to Oct. 17, 2007, 27 pages.

Diao, et al., Query Processing for High-Volume XML Message
Brokering, Proceedings of the 29th VLDB Conference, Berlin, Ger-
many, 2003, 12 pages.

Diao, Query Processing for Large-Scale XML Message Brokering,
University of California Berkeley, 2005, 226 pages.

Dindar, et al., Event Processing Support for Cross-Reality Environ-
ments, Pervasive Computing, IEEE CS, Jul.-Sep. 2009, Copyright
2009, IEEE, Jul.-Sep. 2009, pp. 2-9.

Fernandez, et al., Build your own XQuery processor, slide show, at
URL: http://www.galaxyquery.org/slides/edbt-summer-school2004.
pdf, 2004, 116 pages.

Fernandez, et al., Implementing XQuery 1.0: The Galax Experience,
Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003,
4 pages.

Florescu, et al., The BEA/XQRL Streaming XQuery Processor, Pro-
ceedings of the 29th VL. DB Conference, 2003, 12 pages.

Gilani, Design and implementation of stream operators, query
instantiator and stream buffer manager, Dec. 2003, 137 pages.
Golab, et al., Issues in Data Stream Management, ACM SIGMOD
Record, vol. 32, issue 2, ACM Press, Jun. 2003, pp. 5-14.

Golab, et al., Sliding Window Query Processing Over Data Streams,
University of Waterloo, D Waterloo, Ont. Canada, Aug. 2006, 182
pages.

Gosling, et al., The Java Language Specification, Book, copyright ,
3rd edition, FG , Sun Microsystems USA. D (due to size, reference
will be uploaded in two parts), 1996-2005, 684 pages.

Hao, et al., Achieving high performance web applications by service
and database replications at edge servers, Performance Computing
and communications conference(IPCCC) IEEE 28th International,
IEEE, Piscataway, NJ, USA, XP031622711, ISBN: 978-1-4244-
5737-3, 2009, pp. 153-160.

Hopcroft, Introduction to Automata Theory, Languages, and Com-
putation, Second Edition, Addison-Wesley, Copyright 2001, 524
pages.

Hulton, et al., Mining Time-Changing Data Stream, Proceedings of
the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Aug. 2001, 10 pages.

Jin, et al., ARGUS: Efficient Scalable Continuous Query Optimiza-
tion for Large-Volume Data Streams, 10th International Database
Engineering and Applications Symposium (IDEAS’06), 2006, 7
pages.

Kawaguchi, et al., Java Architecture for XML Binding (JAXB) 2.2,
Sun Microsystems, Inc., Dec. 10, 1999, 384 pages.

Knuth, et al., Fast Pattern Matching in Strings, Siam J Comput 6(2),
Jun. 1977, 323-50 pages.

Lakshmanan, et al., On efficient matching of streaming XML docu-
ments and queries, 2002, 18 pages.

Lindholm, et al., Java Virtual Machine Specification, 2nd Edition
Prentice Hall, Apr. 1999, 484 pages.

US 9,098,587 B2
Page 8

(56) References Cited
OTHER PUBLICATIONS

Liu, et al., Efficient XSLT Processing in Relational Database System,
Proceeding of the 32nd. International Conference on Very Large Data
Bases (VLDB), Sep. 2006, pp. 1106-1116.

Luckham, What’s the Difference Between ESP and CEP? Complex
Event Processing, downloaded, at URL:http://complexevents.com/
?7p=103, Apr. 29, 2011, 5 pages.

Madden, et al., Continuously Adaptive Continuous Queries (CACQ)
over Streams, SIGMOD, Jun. 4-6, 2002, 12 pages.

Martin, et al., Finding Application Errors and Security Flaws Using
PQL, a Program Query Language, OOPSLA’05, Oct. 16, 2005, pp.
1-19.

Motwani, et al., Query Processing Resource Management, and
Approximation in a Data 0 Stream Management System, Proceed-
ings of CIDR, Jan. 2003, 12 pages.

Munagala, et al., Optimization of Continuous Queries with Shared
ExpensiveFilters, Proceedings of the 26th ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, Oct. 17,
2007, 14 pages.

Nah, et al., A Cluster-Based TMO-Structured Scalable Approach for
Location Information Systems, Object-Oriented Real-Time Depend-
able Systems, 2003. Words 2003 Fall. Proceedings. Ninth IEEE
International Workshop on Date of Conference: Oct. 1-3, 2003, pp.
225-233.

Novick, Creating a User Defined Aggregate with SQL Server 2005,
URL: http://novicksoftware.com/Articles/sql-2005-product-user-
defined-aggregate html, 2005, 6 pages.

International Application No. PCT/US2011/052019, International
Search Report and Written Opinion mailed on Nov. 17, 2011, 55
pages.

International Application No. PCT/US2012/034970, International
Search Report and Written Opinion mailed on Jul. 16, 2012, 13
pages.

International Application No. PCT/US2012/036353, International
Search Report and Written Opinion mailed on Sep. 12, 2012, 11
pages.

Peng, et al., Xpath Queries on Streaming Data, 2003, pp. 1-12.
Peterson, Petri Net Theory and the Modeling of Systems, Prentice
Hall, 1981, 301 pages.

PostgresSQL, Manuals: PostgresSQL 8.2: Create Aggregate,
believed to be prior to Apr. 21, 2007, 4 pages.

PostgresSQL, Documentation: Manuals: PostgresSQL 8.2: User-De-
fined Aggregates believed to be prior to Apr. 21, 2007, 4 pages.
Sadri, et al., Expressing and Optimizing Sequence Queries in Data-
base Systems, ACM Transactions on Database Systems, vol. 29, No.
2, ACM Press, Copyright, Jun. 2004, 282-318 pages.

Sadtler, et al., WebSphere Application Server Installation Problem
Determination, Copyright 2007, IBM Corp., 2007, 1-48 pages.
Sansoterra, Empower SQL with Java User-Defined Functions,
ITJungle.com, Oct. 9, 2003, 9 pages.

Sharaf, et al., Efficient Scheduling of Heterogeneous Continuous
Queries, VLDB, Sep. 12-15, 2006, 511-522 pages.

Stolze, et al., User-defined Aggregate Functions in DB2 Universal
Database, Retrievd from: <http:/www.128. ibm.com/
develOperworks/d b2/1 ibrary/tachartic 1e/0309stolze/0309stolze.
html>, Sep. 11, 2003, 11 pages.

Stump, et al., Proceedings, The 2006 Federated Logic Conference,
IJCAR ’06 Workshop, PLPV ’06: Programming Languages meets
Program Verification, 2006, 1-113 pages.

Terry, et al., Continuous queries over append-only database, Proceed-
ings of ACM SIGMOD, 1992, 321-330 pages.

Ullman, et al., Introduction to JDBC, Stanford University, 2005, 7
pages.

Vajjhala, et al., The Java Architecture for XML Binding (JAXB) 2.0,
Sun Microsystem, D Inc., Final Release , Apr. 19, 2006, 384 pages.
Vijayalakshmi, et al., Processing location dependent continuous que-
ries in distributed mobile databases using mobile agents, IET-UK
International Conference on Information and Communication Tech-
nology in Electrical Sciences (ICTES 2007), Dec. 22, 2007, 1023-
1030 pages.

W3C, XML Path Language (Xpath), W3C Recommendation, Ver-
sion. 1.0, Retrieved from: URL: http://www.w3.org/TR/xpath, Nov.
16, 1999, 37 pages.

Wang, et al., Distributed continuous range query processing on mov-
ing objects, DEXA’06 Proceedings of the 17th international confer-
ence on Database and Expert Systems Applications, 2006, 655-665
pages.

White, et al., WebLogic Event Server: A Lightweight, Modular
Application Server for Event Processing, 2nd International Confer-
ence on Distributed Event-Based Systems, Rome, Italy, Copyright
2004., Jul. 2-4, 2008, 8 pages.

Widom, et al.,, CQL: A Language for Continuous Queries over
Streams and Relations, Oct. 17, 2007, 62 pages.

Widom, et al., The Stanford Data Stream Management System,
PowerPoint Presentation, Oct. 17, 2007, 110 pages.

Wu, et al., Dynamic Data Management for Location Based Services
in Mobile Environments, Database Engineering and Applications
Symposium, Jul. 16, 2003, 172-181 pages.

Zemke, XML Query, mailed on Mar. 14, 2004, 29 pages.

Pattern Recognition With MATCH__ RECOGNIZE, Oracle™ Com-
plex Event Processing CQL Language Reference, 11g Release 1
(11.1.1) E12048-03, May 2009, pp. 15.1 to 15.20.

U.S. Appl. No. 11/977,437, Notice of Allowance mailed on Jul. 10,
2013, 10 pages.

U.S. Appl. No. 11/601,415, Non-Final Office Action mailed on Dec.
11, 2013, 58 pages.

U.S. Appl. No. 12/396,464, Non Final Office Action mailed on Dec.
31, 2013, 16 pages.

U.S. Appl. No. 12/548,187, Final Office Action mailed on Jun. 10,
2013, 18 pages.

U.S. Appl. No. 12/548,222, Notice of Allowance mailed on Jul. 18,
2013, 12 pages.

U.S. Appl. No. 12/548,281, Final Office Action mailed on Oct. 10,
2013, 21 pages.

U.S. Appl. No. 12/548,290, Notice of Allowance mailed on Sep. 11,
2013, 6 pages.

U.S. Appl. No. 12/949,081, Final Office Action mailed on Aug. 27,
2013, 13 pages.

U.S. Appl. No. 13/089,556, Final Office Action mailed on Aug. 29,
2013, 10 pages.

U.S. Appl. No. 13/089,556, Non-Final Office Action mailed on Jan.
9, 2014, 14 pages.

U.S. Appl. No. 13/102,665, Final Office Action mailed on Jul. 9,
2013, 17 pages.

U.S. Appl. No. 13/107,742, Final Office Action mailed on Jul. 3,
2013, 19 pages.

U.S. Appl. No. 13/177,748, Non-Final Office Action mailed on Aug.
30, 2013, 24 pages.

U.S. Appl. No. 13/193,377, Notice of Allowance mailed on Aug. 30,
2013, 19 pages.

Non-Final Office Action for U.S. Appl. No. 12/548,187 dated Feb. 6,
2014, 53 pages.

Agrawal et al. “Efficient pattern matching over event streams,” Pro-
ceedings of the 2008 ACM SIGMOD international conference on
Management of data, pp. 147-160 (Jun. 2008).

Chandramouli et al., High-Performance Dynamic Pattern Matching
over Disordered Streams, Proceedings of the VLDB Endowment,
vol. 3 Issue 1-2, Sep. 2010, pp. 220-231.

Chapple “Combining Query Results with the UNION Command,”
ask.com Computing Databases, downloaded from: http://databases.
about.com/od/sql/a/union . htm (no date, printed on Oct. 14, 2013).
Chui, WebSphere Application Server V6.1—Class loader problem
determination, IBM.com, copyright 2007, 66 pages.

Komazec et al., Towards Efficient Schema-Enhanced Pattern Match-
ing over RDF Data Streams, Proceedings of the 1st International
Workshop on Ordering and Reasoning (OrdRing 2011), Bonn, Ger-
many, Oct. 2011.

Ogrodnek, Custom UDFs and hive, Bizo development blog http://
dev.bizo.com, Jun. 23, 2009, 2 pages.

Bottom-up parsing, Wikipedia, downloaded from: http://en.
wikipedia.org/wiki/Bottom-up__parsing, Sep. 8, 2014, pp. 1-2.
Branch Predication, Wikipedia, downloaded from: http://en.
wikipedia.org/wiki/Branch__predication, Sep. 8, 2014, pp. 1-4.

US 9,098,587 B2
Page 9

(56) References Cited
OTHER PUBLICATIONS

Microsoft Computer Dictionary, 5th Edition, Microsoft Press,
Redmond, WA, ©, 2002, pp. 238-239 and 529.

Notice of Allowance for U.S. Appl. No. 13/089,556 dated Oct. 6,
2014, 9 pages.

U.S. Appl. No. 12/396,464, Notice of Allowance mailed on Sep. 3,
2014, 7 pages.

U.S. Appl. No. 12/548,187, Advisory Action mailed on Sep. 26,
2014, 6 pages.

U.S. Appl. No. 12/548,281, Final Office Action mailed on Aug. 13,
2014, 19 pages.

U.S. Appl. No. 12/913,636, Non-Final Office Action mailed on Jul.
24,2014, 22 pages.

U.S. Appl. No. 12/957,201, Non-Final Office Action mailed on Jul.
30, 2014, 12 pages.

U.S. Appl. No. 13/764,560, Non Final Office Action mailed on Sep.
12,2014, 23 pages.

U.S. Appl. No. 13/770,969, Non Final Office Action mailed on Aug.
7, 2014, 9 pages.

U.S. Appl. No. 14/302,031, Non-Final Office Action mailed on Aug.
27,2014, 19 pages.

Abadi et al., Aurora: a new model and architecture for data stream
management, the VLDB Journal the International Journal on very
large data bases, vol. 12, No. 2, Aug. 1, 2003, pp. 120-139.
Balkesen et al., Scalable Data Partitioning Techniques for Parallel
Sliding Window Processing over Data Streams, 8th International
Workshop on Data Management for Sensor Networks, Aug. 29,2011,
pp. 1-6.

Chandrasekaran et al., PSoup: a system for streaming queries over
streaming data, the VLDB Journal the International Journal on very
large data bases, vol. 12, No. 2, Aug. 1, 2003, pp. 140-156.
Dewson, Beginning SQL Server 2008 for Developers: From Novice
to Professional, A Press, Berkeley, CA, 2008, pp. 337-349 and 418-
438.

Harish et al., Identifying robust plans through plan diagram reduc-
tion, PVLDB 08, Auckland, New Zealand, Aug. 23-28, 2008, pp.
1124-1140.

Krimer, Continuous Queries Over Data Streams—Semantics and
Implementation, Fachbereich Mathematik and Informatik der
Philipps-Universitat, Marburg, Germany, Retrieved from the
Internet: URL:http://archiv.ub.uni-marburg.de/dissjz007/0671/
pdfjdjk.pdf, Jan. 1, 2007; 313 pages.

International Application No. PCT/US2013/062047, International
Search Report and Written Opinion mailed Jul. 16, 2014, 12 pages.
International Application No. PCT/US2013/062050, International
Search Report & Written Opinion mailed on Jul. 2, 2014, 13 pages.
International Application No. PCT/US2013/062052, International
Search Report & Written Opinion mailed on Jul. 3, 2014, 12 pages.
International Application No. PCT/US2013/073086, International
Search Report and Written Opinion mailed on Mar. 14, 2014.
International Application No. PCT/US2014/017061, International
Search Report and Written Opinion mailed on Sep. 9, 2014, 12 pages.
Rao et al., Compiled Query Execution Engine using JVM, ICDE °06,
Atlanta, GA, Apr. 3-7, 2006, 12 pages.

Ray et al., Optimizing complex sequence pattern extraction using
caching, data engineering workshops (ICDEW)~ 2011 IEEE 27th
international conference on IEEE, Apr. 11, 2011, pp. 243-248.
Shah et al., Flux: an adaptive partitioning operator for continuous
query systems, Proceedings of the 19th International Conference on
Data Engineering, Mar. 5-8, 2003, pp. 25-36.

Stillgeret al., LEO—DB2’s LEarning Optimizer, Proc. ofthe VLDB,
Roma, Italy, Sep. 2001, pp. 19-28.

U.S. Appl. No. 12/548,281, Non-Final Office Action mailed on Feb.
13, 2014, 16 pages.

U.S. Appl. No. 13/177,748, Final Office Action mailed on Mar. 20,
2014, 23 pages.

PCT Patent Application No. PCT/US2014/010832, International
Search Report mailed on Apr. 3, 2014, 9 pages.

Cadonna et al., Efficient event pattern matching with match windows,
Proceedings of the 18” ACM SIGKDD international conference on
knowledge discovery and data mining (Aug. 2012), pp. 471-479.
Nichols et al., A faster closure algorithm for pattern matching in
partial-order event data, IEEE International Conference on Parallel
and Distributed Systems (Dec. 2007), pp. 1-9.

“Strings in C,” Swarthmore College, retrieved from internet: http://
web.cs.swarthmore.edu/~newhall/unixhelp/C__strings.html (Jun.
12, 2007) 3 pages.

“Call User Defined Functions from Pig,” Amazon Elastic
MapReduce Developer Guide (Mar. 2009) 2 pages.

U.S. Appl. No. 11/874,197, Notice of Allowance mailed on Jun. 22,
2012, 20 pages.

U.S. Appl. No. 12/396,464, Final Office Action mailed on May 16,
2014, 16 pages.

U.S. Appl. No. 13/107,742, Non-Final Office Action mailed on Jun.
19, 2014, 20 pages.

U.S. Appl. No. 12/548,187, Non-Final Office Action mailed on Jun.
4, 2014, 64 pages.

U.S. Appl. No. 13/089,556, Final Office Action mailed on Jun. 13,
2014, 14 pages.

U.S. Appl. No. 13/244,272, Notice of Allowance mailed on Aug. 12,
2013, 12 pages.

International Application No. PCT/US2011/052019, International
Preliminary Report on Patentability mailed on Mar. 28, 2013, 6
pages.

International Application No. PCT/US2012/034970, International
Preliminary Report on Patentability mailed on Nov. 21, 2013, 7
pages.

International Application No. PCT/US2012/036353, International
Preliminary Report on Patentability mailed on Nov. 28, 2013, 6
pages.

International Search Report and Written Opinion dated Dec. 15,2014
for PCT/US2014/010920, 10 pages.

Babu et al., “Exploiting k-Constraints to Reduce Memory Overhead
in Continuous Queries Over Data Streams”, ACM Transactions on
Database Systems (TODS) vol. 29 Issue 3, Sep. 2004, 36 pages.
Tho et al. “Zero-latency data warchousing for heterogeneous data
sources and continuous data streams,” 5th International Conference
on Information Integrationand Web-based Applications Services
(Sep. 2003) 12 pages.

“SQL Subqueries”—Dec. 3, 2011, 2 pages.

“Caching Data with SqiDataSource Control”—1Jul. 4, 2011, 3 pages.
“SCD—Slowing Changing Dimensions in a Data Warchouse”—
Aug. 7, 2011, one page.

Non-Final Office Action for U.S. Appl. No. 13/838,259 dated Oct. 24,
2014, 21 pages.

Notice of Allowance for U.S. Appl. No. 13/102,665 dated Nov. 24,
2014, 9 pages.

Non-Final Office Action for U.S. Appl. No. 13/827,631 dated Nov.
13, 2014, 10 pages.

Non-Final Office Action for U.S. Appl. No. 13/827,987 dated Nov. 6,
2014, 9 pages.

Non-Final Office Action for U.S. Appl. No. 11/601,415 dated Oct. 6,
2014, 18 pages.

Non-Final Office Action for U.S. Appl. No. 14/077,230 dated Dec. 4,
2014, 30 pages.

Non-Final Office Action for U.S. Appl. No. 13/828,640 dated Dec. 2,
2014, 11 pages.

Non-Final Office Action for U.S. Appl. No. 13/830,428 dated Dec. 5,
2014, 23 pages.

Non-Final Office Action for U.S. Appl. No. 13/830,502 dated Nov.
20, 2014, 25 pages.

Non-Final Office Action for U.S. Appl. No. 13/839,288 dated Dec. 4,
2014, 30 pages.

U.S. Appl. No. 12/949,081, Non-Final Office Action mailed on Jan.
28, 2015, 20 pages.

U.S. Appl. No. 12/957,201, Notice of Allowance mailed on Jan. 21,
2015, 5 pages.

U.S. Appl. No. 13/107,742, Final Office Action mailed on Jan. 21,
2015, 23 pages.

U.S. Appl. No. 13/177,748, Non-Final Office Action mailed on Feb.
3, 2015, 22 pages.

US 9,098,587 B2
Page 10

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 13/770,961, Non-Final Office Action mailed on Feb.
4, 2015, 22 pages.

U.S. Appl. No. 13/770,969, Notice of Allowance mailed on Jan. 22,
2015, 5 pages.

U.S. Appl. No. 13/829,958, Non-Final Office Action mailed on Dec.
11, 2014, 15 pages.

U.S. Appl. No. 13/906,162, Non-Final Office Action mailed on Dec.
29, 2014, 10 pages.

International Application No. PCT/US2014/010832, Written Opin-
ion mailed on Dec. 15,2014, S pages.

International Application No. PCT/US2014/017061, Written Opin-
ion mailed on Feb. 3, 2015, 6 pages.

International Application No. PCT/US2014/039771, International
Search Report and Written Opinion mailed on Sep. 24, 2014, 12
pages.

Non-Final Office Action for U.S. Appl. No. 13/830,378 dated Feb.
25,2015, 23 pages.

Non-Final Office Action for U.S. Appl. No. 13/830,129 dated Feb.
27,2015, 19 pages.

International Application No. PCT/US2014/068641, International
Search Report and Written Opinion mailed on Feb. 26, 2015, 11
pages.

Cranor et al. “Gigascope: a stream database for network applica-
tions,” Proceedings of the 2003 ACM SIGMOD international con-
ference on management of data, pp. 647-651 (Jun. 2003).
Non-Final Office Action for U.S. Appl. No. 12/913,636 dated Apr. 1,
2015, 22 pages.

Final Office Action for U.S. Appl. No. 13/827,631 dated Apr. 3, 2015,
11 pages.

Notice of Allowance for U.S. Appl. No. 13/839,288 dated Apr. 3,
2015, 12 pages.

Notice of Allowance for U.S. Appl. No. 14/077,230 dated Apr. 16,
2015, 16 pages.

Final Office Action for U.S. Appl. No. 13/764,560 dated Apr. 15,
2015, 19 pages.

European Patent Application No. 12783063.6, Extended Search
Report mailed Mar. 24, 2015, 6 pages.

Oracle® Complex Event Processing EPL. Language Reference 11g
Release 1 (11.1.1.4.0), E14304-02, Jan. 2011, 80 pages.

De Castro Alves, A General Extension System for Event Processing
Languages, DEBS ’11, New York, NY, USA, Jul. 11-15, 2011, pp.
1-9.

Takenaka et al., A scalable complex event processing framework for
combination of SQL-based continuous queries and C/C++ functions,
FPL 2012, Oslo, Norway, Aug. 29-31, 2012, pp. 237-242.

Tomas et al., RoSeS: A Continuous Content-Based Query Engine for
RSS Feeds, DEXA 2011, Toulouse, France, Sep. 2, 2011, pp. 203-
218.

* cited by examiner

U.S. Patent Aug. 4, 2015 Sheet 1 of 8 US 9,098,587 B2

100
Y 2
10§
104\% EVENT PROCESSING SERVER
EVENT SOURCE m EVENT APP EVENT APP % EVENT SINK
196 114 152 R124 126 \
EVENT SOURCE |VPUT STREAW | 110
EVENT APP
116 CONTINUOUS QUERY
FVENT SOURCE | INPUT STREAV |] WITH VARIABLE OuTPUT STREAM | FvenT SINK
/ DURATION NON-EVENT \
/ 118 PATTERN MATCHING 198 \
108] T 112
/ N
130 120

FIG. 1

U.S. Patent

214

)

Aug. 4, 2015

Sheet 2 of 8 US 9,098,587 B2
200
'
(START)
A 4
RECEIVE EVENT —~—202

| OTHER EVENT-
RELATED PROCESSING

A

EVENT
STARTS AN ACTIVE
BINDING?

204

DETERMINE A DURATION FOR THE NEWLY STARTED
BINDING (POSSIBLY, BASED UPON A VALUE OF AN

——206
ATTRIBUTE OF THE EVENT RECEIVED IN 202)

l

DETERMINE A TARGET TIME (EXPIRATION TIME) FOR
THE ACTIVE BINDING BASED UPON THE DURATION

—~— 208
DETERMINED IN 206

A 4

ASSOCIATE THE TARGET TIME DETERMINED IN 208

210
WITH THE NEWLY STARTED ACTIVE BINDING

WAIT FOR NEXT EVENT 212

FIG. 2

U.S. Patent Aug. 4, 2015 Sheet 3 of 8

RECEIVE EVENT

TARGET
TIME OF BINDING <= TIMESTAMP
OF EVENT RECEIVED IN
3027

YES

304

314

BINDING
IN FINAL

US 9,098,587 B2
— 300
—~— 302
No
306

ACTIVE
BINDING CAN BE GROWN

STATE? BASED UPON THE RECEIVED
EVENT?
YES
316 310 308

A

NON-EVENT > DROP BINDING GROW BINDING

REPORTING
A

> WAIT FOR NEXT EVENT <

312

FIG. 3

U.S. Patent Aug. 4, 2015 Sheet 4 of 8 US 9,098,587 B2
EVENT (TUPLE) 400
402 404
DURATION AND
EXPIRATION TME |«t———— '\gglg’:?gf —— BINDINGS MANAGER
EVALUATOR
40{3 i NON-EVENT
INFO
DATA STRUCTURES
/ OuTPUT
408
410

FIG. 4

U.S. Patent Aug. 4, 2015 Sheet 5 of 8 US 9,098,587 B2

ACTIVE BINDING 1 WITH DURATION

ACTIVE BINDING 2 WITH
DURATION

> TIME

NEXT INPUT TIME

FIG. 5

U.S. Patent Aug. 4, 2015 Sheet 6 of 8

B1 PARTITION P1: ACTIVE BINDING

B2| PARTITION P1: UNSURE BINDING

B3

PARTITION P2: UNSURE BINDING

US 9,098,587 B2

» TIME

CURRENT
TIME

FIG. 6

U.S. Patent Aug. 4, 2015 Sheet 7 of 8 US 9,098,587 B2

METADATA
DATABASE

APPLICATION
DATABASE

714 716

EVENT PROCESSING

SYSTEM 712

708

702 704 706

FIG. 7

U.S. Patent Aug. 4, 2015 Sheet 8 of 8 US 9,098,587 B2

800
'
810
L
COMPUTER
READABLE STORAGE
MEDIA
802 804 806 808 812
PROCESSING
1S | | g | | smoreren | | devceg | | MEPAREOER
(E.G., CPUs))
824
COMMUNICATION PROCESSING WORKING
SUBSYSTEM ACCELERATION MEMORY
\-'?14 81r6~J OPERATING
/__/ SYSTEM
820
OTHER CODE
~T—"1 (ProcrAMS)
822

818
FIG. 8

US 9,098,587 B2

1
VARIABLE DURATION NON-EVENT
PATTERN MATCHING

CROSS-REFERENCES TO RELATED
APPLICATIONS

The present application is a non-provisional of and claims
the benefit and priority under 35 U.S.C. 119(e) of U.S. Pro-
visional Application No. 61/752,855 filed Jan. 15, 2013,
entitled VARIABLE DURATION NON EVENT PATTERN
MATCHING, the entire contents of which are incorporated
herein by reference for all purposes.

BACKGROUND

The disclosed embodiments relate generally to data pro-
cessing systems, and more specifically to techniques for per-
forming non-event pattern matching on continuous event
streams using variable duration functionality.

In traditional database systems, data is stored in one or
more databases usually in the form of tables. The stored data
is then queried and manipulated using a data management
language such as SQL. For example, a SQL query may be
defined and executed to identify relevant data from the data
stored in the database. A SQL query is thus executed on a
finite set of data stored in the database. Further, when a SQL
query is executed, it is executed once on the finite data set and
produces a finite static result. Databases are thus best
equipped to run queries over finite stored data sets.

A number of modern applications and systems however
generate data in the form of continuous data or event streams
instead of a finite data set. Examples of such applications
include but are not limited to sensor data applications, finan-
cial tickers, network performance measuring tools (e.g. net-
work monitoring and traffic management applications), click-
stream analysis tools, automobile traffic monitoring, and the
like. For example, a temperature sensor may be configured to
send out temperature readings. Such applications have given
rise to a need for a new breed of applications that can process
the data streams.

Managing and processing data for these types of event
stream-based applications involves building data manage-
ment and querying capabilities with a strong temporal focus.
A different kind of querying mechanism is needed that com-
prises long-running queries over continuous unbounded sets
of' data. While some vendors now offer product suites geared
towards event streams processing, these product offerings
still lack the processing flexibility required for handling
today’s events processing needs.

BRIEF SUMMARY

Certain embodiments are disclosed for performing non-
event pattern matching on continuous event streams using
variable duration.

In the context of pattern matching functionality of an
event-processing engine, non-event detection refers to the
detection of a situation when a certain event, which should
have occurred in a particular time frame, does not occur in
that time frame. For example, in a scenario when events occur
in a specific order, non-event detection can be used to detect
the situation where a particular event which is supposed to
occur next in that order in a particular timeframe does not
happen within that timeframe.

In non-events-based pattern matching, the arrival of an
event may cause a pattern match candidate (sometimes
referred to as a binding) to be started. A time duration is

10

15

20

25

30

35

40

45

50

55

60

2

calculated and associated with the newly created binding,
where the duration identifies a period after which the binding
expires. In the context of non-event pattern matching, this
duration may, for example, identify the timeframe in which
the expected next event is supposed to occur. Certain embodi-
ments of the present invention allow this duration to be vari-
able for different bindings.

For example, a first event received via an event stream may
cause a first pattern match candidate (i.e., a first binding) to be
started. A second event received via the same event stream
may cause a second pattern match candidate (i.e., a second
binding) to be started. According to an embodiment of the
present invention, the duration for the first binding can be
different from the duration for the second binding. In this
manner, different bindings used in the context of non-event
pattern matching may have different or variable durations
associated with them.

In certain embodiments, the duration for a binding may be
based upon a value of an attribute of the event that starts the
binding. For example, the duration may be expressed by a
mathematical expression, where the expression is based upon
one or more event attribute values of the event that causes the
binding to be started. Since the values of the attribute can be
different for different events, the duration calculated for bind-
ings started by the different events may be different. This
provides greater flexibility in performing non-event pattern
matching and enables the processing to be applied to several
real life scenarios, which was not possible in the past where
all bindings had a fixed or constant duration.

In certain embodiments, a first event and a second event
maybe received via an event stream. The first event may cause
a first pattern match candidate to be started for a pattern. The
second event may cause a second pattern match candidate to
be started for the pattern. A first duration may be computed for
the first pattern match candidate and a second duration may be
computed for the second pattern match candidate, where the
second duration is different from the first duration. In this
manner, different events may have different duration associ-
ated with them.

In certain embodiment, the durations for the pattern
matches starting at the first and second events may be com-
puted based upon the value of an attribute of the events. For
example, a first value of a first attribute of the first event may
be determined and a second value of the first attribute of the
second event may be determined, where the second value is
different from the first value. The first value may then be used
to compute the duration for the pattern match that started due
to the first event and the second value may be used to compute
the duration for the pattern match that started from the second
event.

In certain embodiments, the durations for the pattern
matches starting at the first and second events may be com-
puted based upon evaluation of an expression (e.g., an arith-
metic expression). For example, a first value of a first attribute
of'the first event may be determined and a second value of the
first attribute of the second event may be determined, where
the second value is different from the first value. An arith-
metic expression may then be evaluated using the first value
to compute the duration for the pattern match resulting from
the first event and the arithmetic expression may be evaluated
using the second value to compute the second duration for the
pattern match resulting from the second event.

In certain embodiments, after the first time duration for the
first pattern match candidate has passed, it may be determined
whether the first pattern match candidate has matched the
pattern. Upon determining that the first pattern match candi-

US 9,098,587 B2

3

date has matched the pattern, information may be output
indicative of a non-event occurrence corresponding to the first
pattern match candidate.

In certain embodiments, an expiration time may be deter-
mined for the first pattern match candidate based upon an
event timestamp associated with the first event and the first
computed duration. This expiration time may then be associ-
ated with the first pattern match candidate. An expiration time
may be determined for the second pattern match candidate
based upon an event timestamp associated with the second
event and the second computed duration. This expiration time
may then be associated with the second pattern match candi-
date. In one embodiment, the expiration time for a pattern
match candidate is determined by adding the duration com-
puted for the pattern match candidate to the event timestamp
associated with the event that started the pattern match can-
didate.

In certain embodiments, after an expirations time has been
determined and associated with a pattern match candidate, a
determination may be made, at or after the expiration time
associated with the pattern match candidate, whether the pat-
tern match candidate has matched the pattern. Upon deter-
mining that the pattern match candidate has matched the
pattern, information may be output indicative of a non-event
occurrence corresponding to the pattern match candidate.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a simplified high level diagram of an event
processing system that may incorporate an embodiment of
the present invention;

FIG. 2 depicts a simplified flowchart depicting processing
performed upon receiving an event according to an embodi-
ment of the present invention;

FIG. 3 depicts a simplified flowchart depicting processing
performed upon receiving an event with respect to existing
bindings according to an embodiment of the present inven-
tion;

FIG. 4 depicts modules and data structures that may be
used to implement non-event detection using variable dura-
tion windows according to an embodiment of the present
invention;

FIG. 5 depicts a possible scenario that can occur when an
ALL MATCHES clause is specified according to an embodi-
ment of the present invention;

FIG. 6 depicts a possible scenario that can occur when a
partitions and SKIP PAST LAST ROW clause is specified
according to an embodiment of the present invention;

FIG. 7 is a simplified block diagram illustrating compo-
nents of a system environment that may be used in accordance
with an embodiment of the present invention; and

FIG. 8 is a simplified block diagram of a computer system
that may be used in accordance with certain embodiments of
the present invention.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, specific details are set forth in order to provide a thor-
ough understanding of embodiments of the invention. How-
ever, it will be apparent that various embodiments may be
practiced without these specific details. The figures and
description are not intended to be restrictive.

Certain embodiments are disclosed for performing non-
event pattern matching on continuous event streams using
variable durations.

10

15

20

25

30

35

40

45

50

55

60

65

4

In the context of pattern matching functionality of an
event-processing engine, non-event detection refers to the
detection of a situation when a certain event, which should
have occurred in a particular time frame, does not occur in
that time frame. For example, in a scenario when events occur
in a specific order, non-event detection can be used to detect
the situation where a particular event which is supposed to
occur next in that order in a particular timeframe does not
happen within that timeframe.

In events-based pattern matching, the arrival of an event
may cause a pattern match candidate (sometimes referred to
as a binding) to be started. A time duration is calculated and
associated with the newly created binding, where the time
duration identifies a period of time after which the binding
expires. In the context of non-event pattern matching, this
duration may, for example, identify the timeframe in which
the expected next event is supposed to occur.

In the past, the duration associated with each binding start-
ing due to a pattern match was always constant or fixed. For
example, the DURATION clause, which is used to specify the
duration for a binding could only take a constant or fixed
value as a parameter, for example, “DURATION 10”. With
such a clause, every time a new pattern match binding starts,
the duration for the binding was always set to 10 time units
(10 seconds) and was the same for all bindings. This greatly
limited the ability to use non-event pattern matching to model
real life situations.

Certain embodiments of the present invention provide the
desired flexibility allowing the duration associated with a
binding to be variable for different bindings. For example, a
first event received via an event stream may cause a first
pattern match candidate (i.e., a first binding) to be started and
a second event received via the same event stream may cause
a second pattern match candidate (i.e., a second binding) to be
started. According to certain embodiments of the present
invention, the duration for the first binding can be different
from the duration for the second binding. In this manner, the
duration for one binding can vary from the duration for
another binding. Different bindings used in the context of
non-event pattern matching may thus have different or vari-
able durations associated with them.

In certain embodiments, the duration for a binding may be
based upon a value of an attribute of the event that starts the
binding. For example, the duration may be expressed by a
mathematical expression, where the expression is based upon
one or more event attribute values of the event that causes the
binding to be started. Since the values of the attribute can be
different for different events, the duration calculated for bind-
ings started by the different events may be different. This
provides greater flexibility in performing non-event pattern
matching and enables the processing to be applied to several
real life scenarios, which was not possible in the past where
all bindings had a fixed or constant duration.

As described above, embodiments of the present invention
may be applied to the processing of event streams (also
referred to continuous data streams). A continuous data
stream or an event stream is a stream of data or events that
may be continuous or unbounded in nature with no explicit
end. Logically, an event or data stream is a sequence of data
elements (also referred to as events), each data element hav-
ing an associated timestamp. A continuous event stream may
be logically represented as a bag or set of elements (s, T),
where “s” represents the data portion and “T” is in the time
domain. The “s” portion is generally referred to as a tuple or
event. An event stream is thus a sequence of time-stamped
tuples or events.

US 9,098,587 B2

5

In some embodiments, the timestamps associated with
events in a stream may equate to a clock time. In other
embodiments, however, the time associated with events in an
event stream may be defined by the application domain and
may not correspond to clock time but may, for example, be
represented by sequence numbers instead. Accordingly, the
time information associated with an event in an event stream
may be represented by a number, a timestamp, or any other
information that represents a notion of temporal sequence.
For a system receiving an input event stream, the events arrive
at the system in the order of increasing timestamps. There
could be more than one event with the same timestamp.

In some embodiments, an event in an event stream may
represent an occurrence of some worldly event (e.g., when a
temperature sensor changed value to a new value, when the
price of a stock symbol changed) and the time information
associated with the event may indicate when the worldly
event represented by the data stream event occurred.

For events received via an event stream, the time informa-
tion associated with an event is used to ensure that the events
in the event stream arrive in the order of increasing timestamp
values. This enables events received in the event stream to be
ordered and processed based upon their associated time infor-
mation. In order to enable this ordering, timestamps are asso-
ciated with events in an event stream in a non-decreasing
manner such that a later-generated event has a later timestamp
than an earlier-generated event. As another example, if
sequence numbers are being used as time information, then
the sequence number associated with a later-generated event
is greater than the sequence number associated with an ear-
lier-generated event. Events belonging to the same event
stream are generally processed in the order imposed on the
events by the associated time information, with earlier events
being processed prior to later events. In some embodiments,
multiple events may be associated with the same timestamp
or sequence number, for example, when the worldly events
represented by the data stream events occur at the same time.
In these situations, the events are processed in the order
received.

The time information (e.g., timestamps) associated with an
event in an event stream may be set by the source ofthe stream
oralternatively may be set by the system receiving the stream.
For example, in certain embodiments, a heartbeat may be
maintained on a system receiving an event stream, and the
time associated with an event may be based upon a time of
arrival of the event at the system as measured by the heartbeat.
It is possible for two events in an event stream to have the
same time information. It is to be noted that while timestamp
ordering requirement is specific to one event stream, events of
different streams could be arbitrarily interleaved.

An event stream has an associated schema “S”, the schema
comprising time information and a set of one or more named
attributes. All events that belong to a particular event stream
conform to the schema associated with that particular event
stream. Accordingly, for an event stream (s, T), the event
stream may have a schema ‘S’ as (<time_stamp>, <attribute
(s)>), where <attributes> represents the data portion of the
schema and can comprise one or more attributes. For
example, the schema for a stock ticker event stream may
comprise attributes <stock symbol>, and <stock price>. Each
event received via such a stream will have a time stamp and
the two attributes. For example, the stock ticker event stream
may receive the following events and associated timestamps:

10

15

20

25

30

35

40

45

50

55

60

65

6

(<timestamp_N>, <NVDA 4>)
(<timestamp_N+1>, <ORCL,62>)
(<timestamp_N+2>, <PCAR,38>)
(<timestamp_N+3>, <SPOT,53>)
(<timestamp_N+4>, <PDCO,44>)
(<timestamp_N+5>, <PTEN,50>)

In the above stream, for stream element (<timestamp_N+1>,
<ORCL,62>), the event values for attributes “stock_symbol”
and “stock_value” are ORCL and 62, respectively. The times-
tamp associated with the stream element is “timestamp_N+
17. A continuous event stream is thus a flow of events, each
event having the same series of attributes.

FIG. 1 depicts a simplified high level diagram of an event
processing system 100 that may incorporate an embodiment
of the present invention. Event processing system 100 may
comprise one or more event sources (104, 106, 108), an event
processing server (EPS) 102 that is configured to provide an
environment for processing event streams, and one or more
event sinks (110, 112). The event sources generate event
streams that are received by EPS 102. EPS 102 may receive
one or more event streams from one or more event sources.
For example, as shown in FIG. 1, EPS 102 receives an input
event stream 114 from event source 104, a second input event
stream 116 from event source 106, and a third event stream
118 from event source 108. One or more event processing
applications (120, 122, and 124) may be deployed on and be
executed by EPS 102. An event processing application
executed by EPS 102 may be configured to listen to one or
more input event streams, process the events received via the
one or more event streams based upon processing logic that
selects one or more events from the input event streams as
notable events. The notable events may then be sent to one or
more event sinks (110, 112) in the form of one or more output
event streams. For example, in FIG. 1, EPS 102 outputs an
output event stream 126 to event sink 110, and a second
output event stream 128 to event sink 112. In certain embodi-
ments, event sources, event processing applications, and
event sinks are decoupled from each other such that one can
add or remove any of these components without causing
changes to the other components.

In one embodiment, EPS 102 may be implemented as a
Java server comprising a lightweight Java application con-
tainer, such as one based upon Equinox OSGi, with shared
services. In some embodiments, EPS 102 may support ultra-
high throughput and microsecond latency for processing
events, for example, by using JRockit Real Time. EPS 102
may also provide a development platform (e.g., a complete
real time end-to-end Java Event-Driven Architecture (EDA)
development platform) including tools (e.g., Oracle CEP
Visualizer and Oracle CEP IDE) for developing event pro-
cessing applications.

An event processing application is configured to listen to
one or more input event streams, execute logic (e.g., a query)
for selecting one or more notable events from the one or more
input event streams, and output the selected notable events to
one or more event sources via one or more output event
streams. In one embodiment, a query may be specified to
detect non-events, and generate an event stream comprising
output from non-event pattern matching. Non-event detection
is the detection of a situation when a certain event which
should have occurred in a particular time limit does not occur
in that time frame. In certain embodiments, a query for detect-
ing non-events comprises a DURATION clause that causes a
match to be reported only when a regular expression specified

US 9,098,587 B2

7

by the query (e.g., specified by a PATTERN clause) is
matched completely and no other event or input arrives until
the duration specified in the DURATION clause expires. An
event received via an event stream may cause a pattern match
candidate (sometimes referred to as a binding) to be started. A
time duration is calculated and associated with the newly
created binding. This duration associated with the binding
may, for example, identify the timeframe in which the
expected next event is supposed to occur. The duration is
measured from the time of arrival of the event that started the
pattern match. According to certain embodiments of the
present invention, the duration of time computed for a first
binding can be different from another binding for the same
pattern being matched. In this manner, the duration for one
binding can vary from the duration for another binding. Dif-
ferent bindings used in the context of non-event pattern
matching may thus have different or variable durations asso-
ciated with them.

FIG. 1 provides a drilldown for an event processing appli-
cation 120 comprising a query for non-event pattern match-
ing. As shown in FIG. 1, event processing application 120 is
configured to listen to input event stream 118, execute a query
130 comprising logic for performing non-event pattern
matching on input event stream 118, and output results of the
non-event pattern matching via output event stream 128 to
event sink 112. In non-event pattern matching, the output is
triggered by atimer expiry event associated with a binding (as
opposed to an explicit input event on the input stream) since
non-event detection detects a situation when a certain event
which should have occurred in a particular time limit does not
occur in that time frame. A binding is considered expired
when the duration of time associated with the binding has
passed. Examples of event sources include, without limita-
tion, an adapter (e.g., JMS, HTTP, and file), a channel, a
processor, a table, a cache, and the like. Examples of event
sinks include, without limitation, an adapter (e.g., JMS,
HTTP, and file), a channel, a processor, a cache, and the like.

Although event processing application 120 in FIG. 1 is
shown as listening to one input stream and outputting selected
events via one output stream, this is not intended to be limit-
ing. In alternative embodiments, an event processing appli-
cation may be configured to listen to multiple input streams
received from one or more event sources, select events from
the monitored streams or detect non-events, and output the
selected events or the results of non-event matching via one or
more output event streams to one or more event sinks. The
same query can be associated with more than one event sink
and with different types of event sinks.

Due to its unbounded nature, the amount of data that is
received via an event stream is generally very large. Conse-
quently, it is generally impractical and undesirable to store or
archive all the data for querying purposes. The processing of
event streams requires processing of the events in real time as
the events are received by EPS 102 without having to store all
the received events data. Accordingly, EPS 102 provides a
special querying mechanism that enables processing of
events to be performed as the events are received by EPS 102
without having to store all the received events.

Event-driven applications are rule-driven and these rules
may be expressed in the form of continuous queries that are
used to process input streams. A continuous query may com-
prise instructions (e.g., business logic) that identify the pro-
cessing to be performed for received events. Continuous que-
ries may be persisted to a data store and used for processing
input streams of events and generating output streams of
events. Continuous queries may specify filtering and aggre-
gation functions to discover and extract notable events from

20

25

40

45

50

8

the input event streams or specify processing related to non-
event pattern matching. As a result, the number of outbound
events in an output event stream is generally much lower than
the number of events in the input event stream from which the
events are selected.

Unlike a SQL query that is run once on a finite data set, a
continuous query that has been registered by an application
with EPS 102 for a particular event stream may be executed
each time that an event is received in that event stream. As part
of the continuous query execution, EPS 102 evaluates the
received event based upon instructions specified by the con-
tinuous query.

A continuous query may be programmed using different
languages. In certain embodiments, continuous queries may
be configured using the Continuous Query Language (CQL)
provided by Oracle Corporation and used by Oracle’s Com-
plex Events Processing (CEP) product offerings. Oracle’s
CQL is a declarative language that can be used to program
queries (referred to as CQL queries) that can be executed
against event streams. In certain embodiments, CQL is based
upon SQL with added constructs that support processing of
streaming events data.

In one embodiment, an event processing application may
be composed of the following component types:

(1) One or more adapters that interface directly to the input
and output stream and relation sources and sinks. Adapters
are configured to understand the input and output stream
protocol, and are responsible for converting the event data
into a normalized form that can be queried by an application
processor. Adapters may forward the normalized event data
into channels or output streams and relation sinks. Event
adapters may be defined for a variety of data sources and
sinks.

(2) One or more channels that act as event processing end-
points. Among other things, channels are responsible for
queuing event data until the event processing agent can act
upon it.

(3) One or more application processors (or event processing
agents) are configured to consume normalized event data
from a channel, process it using queries to select notable
events or detect non-event situations, and forward (or copy)
the selected notable events to an output channel.

(4) One or more beans may be configured or registered to
listen to the output channel, and may be triggered by the
insertion of a new event into the output channel. In some
embodiments, this user code is a plain-old-Java-object
(POJO) or the user code may use Oracle CEP event bean API
so that the bean can be managed by Oracle CEP. The user
application can make use of a set of external services, such as
JMS, Web services, and file writers, to forward the generated
events to external event sinks.

In one embodiment, an event adapter provides event data to
an input channel. The input channel is connected to a CQL
processor associated with one or more CQL queries that
operate on the events offered by the input channel. The CQL
processor is connected to an output channel to which query
results are written.

In some embodiments, an assembly file may be provided
for an event processing application describing the various
components of the event processing application, how the
components are connected together, event types processed by
the application. Separate files may be provided for specifying
the continuous query or business logic for selection of events.

It should be appreciated that system 100 depicted in FIG. 1
may have other components than those depicted in FIG. 1.
Further, the embodiment shown in F1G. 1 is only one example
of'a system that may incorporate an embodiment of the inven-

US 9,098,587 B2

9

tion. In some other embodiments, system 100 may have more
or fewer components than shown in FIG. 1, may combine two
or more components, or may have a different configuration or
arrangement of components. System 100 can be of various
types including a personal computer, a portable device (e.g.,
a mobile telephone or device), a workstation, a network com-
puter, a mainframe, a kiosk, a server, or any other data pro-
cessing system. In some other embodiments, system 100 may
be configured as a distributed system where one or more
components of system 100 are distributed across one or more
networks in the cloud.

The one or more of the components depicted in FIG. 1 may
be implemented in software, in hardware, or combinations
thereof. In some embodiments, the software may be stored in
memory (e.g., a non-transitory computer-readable medium),
ona memory device, or some other physical memory and may
be executed by one or more processing units (e.g., one or
more processors, one or More Processor cores, one or more
GPUs, etc.).

Non-Event Pattern Matching

As described above, non-event detection refers to the
detection of a situation when a certain event, which should
have occurred in a particular time frame, does not occur in
that time frame. For example, in a scenario when events occur
in a specific order, non-event detection can be used to detect
the situation where a particular event which is supposed to
occur next in that order in a particular timeframe does not
happen within that timeframe.

In certain event processing systems, non-event detection
can be accomplished using non-event pattern matching. The
following are some non-limiting examples where non-event
detection is applicable.

Example #1
Purchase Order Tracking Application

A purchase-order tracking system has to be capable of
tracking orders where the ordered items have not been
shipped even though the estimated time of delivery for the
ordered items has elapsed. For example, the workflow for the
purchase-order system may be: order is placed, order is pro-
cessed; and ordered items are shipped and an estimated time
of delivery may be provided for the orders. The application is
configured to report a non-event when an order is placed, is in
process, but has not yet been shipped even though the esti-
mated time of delivery has elapsed. Here, placing an order
and shipping of items may be modeled as separate events. It
can be observed that the estimated time of delivery can be
inherently dependent on the items being ordered and shipped
since this could be different for different purchase orders
depending on the items involved. This variability based upon
the items being shipped cannot be modeled using conven-
tional fixed duration non-event pattern matching but can be
done using certain embodiments of the present invention. The
three worktlow states may be modeled as events and an event
stream may be defined and received having the schema
<orderld, orderDesc, eventlype, estimatedTimeOfDeliv-
ery>, where eventType can have three possible values
“placed”, “in Process”, and “shipped”. The event processing
application reports a non-event when an order is “placed”,
then is “in Process” but it has not yet “shipped” even though
the “estimatedTimeOfDelivery” has elapsed after it was
“placed”. Certain embodiments of the present invention
enable the “estimatedTimeOfDelivery” to be different for

10

15

20

25

30

35

40

45

50

55

60

65

10

different types of orders. A CQL query for performing this
non-detection is provided below.

Example #2
Airport Passenger Tracking Application

Airlines may wish to track the time when a passenger lands
and when the passenger arrives at the baggage claim area. An
airline may expect that upon landing the passenger shows up
at the baggage claim area within a particular timeframe, say
30 minutes. This timeframe expectation may be different for
different airlines. In this scenario, the landing of a passenger
and the passenger’s arrival at the baggage claim area may be
modeled as separate events: event A for landing and event B
for arrival at the baggage claim area. The landing may be
modeled using a regular expression as (A). The duration for
this pattern may be expressed as (T+delay), where T is the
time when a passenger lands (i.e., timestamp of event A) and
where “delay” is the time an airline expects the passenger to
be at the baggage claim area (i.e., the occurrence of event B).
The “delay” may be 30 mins for one airline, and may be
airline specific. Non-events may be reported when event A
occurs (i.e., the pattern is matched) but event B does not occur
within the duration after occurrence of event A.

Referring back to Example #1 (Purchase Order Tracking
example), a stream of events “PurchaseOrderTracking” may
be received having the following schema <orderld, order-
Desc, eventType, estimatedTimeOfDelivery>. As indicated
above, eventlype can have three possible values: “placed”,
“in Process” and “shipped”. A CQL query may be defined for
reporting a match when an order is “placed”, then it is “in
Process” but it has not yet been “shipped” even though the
“estimatedTimeOfDelivery” has elapsed after it was
“placed”. Here the “estimated TimeOfDelivery” can be dif-
ferent for different types of orders. The attribute “estimated-
TimeOfDelivery” of “PurchaseOrderTracking” stream can
stand as the DURATION sub-clause expression. In one
embodiment, this can be captured using a CQL query (qDe-
layedShipments) having a variable duration clause as fol-
lows:

Create query qDelayedShipments as
SELECT
T.id as orderld, T.desc as description
FROM PurchaseOrderTracking MATCH_RECOGNIZE(
PARTITION BY orderId
MEASURES
A.orderld as id, A.orderDesc as desc
ALL MATCHES
INCLUDE TIMER EVENTS
PATTERN (A B) DURATION estimated TimeOfDelivery
DEFINE
A as A.eventType = ‘placed’,
B as B.eventType = ‘inProcess’
yasT

Here, the estimatedTimeOfDelivery is an attribute of the
input event stream schema. Accordingly, for a received input
event that starts a pattern match candidate for pattern (AB),
the duration for that pattern match candidate is determined
based upon the value of the estimatedTimeOfDelivery
attribute of the input event starting the pattern.

The gDelayedShipments query comprises several CQL
clauses, which are described below. In one embodiment, the
CQL language construct MATCH_RECOGNIZE clause is
used for performing pattern recognition in a CQL query.
Using a MATCH_RECOGNIZE clause, a user can define

US 9,098,587 B2

11

conditions on the attributes of incoming events and identify
conditions for pattern matching by using identifiers called
correlation variables. A sequence of consecutive events or
tuples in the input stream, each satistying certain conditions
constitutes a pattern. The pattern recognition functionality
allows a user to define conditions on the attributes of incom-
ing events or tuples and to identify these conditions by using
string names called correlation variables. In the qDelayed-
Shipments query, “A” and “B” are the correlation variables.
The pattern to be matched is specified as a regular expression
over these correlation variables and it determines the
sequence or order in which conditions should be satisfied by
different incoming events to be recognized as a valid match.
A sequence of consecutive events in the input stream satisfy-
ing these conditions constitutes a pattern. In one embodiment,
the output of a MATCH_RECOGNIZE query is a stream.

In query gDelayedShipments shown above, the
MATCH_RECOGNIZE clause has several sub-clauses. The
DEFINE sub-clause specifies the Boolean condition for each
correlation variable. This may be specified as any logical or
arithmetic expression and may apply any single-row or aggre-
gate function to the attributes of events that match a condition.
On receiving a new event via the input stream, the conditions
of the correlation variables that are relevant at that point in
time are evaluated. An event is said to have matched a corre-
lation variable if it satisfies its defining condition. A particular
input can match zero, one, or more correlation variables. The
relevant conditions to be evaluated on receiving an input
event are determined by the processing logic governed by the
PATTERN clause regular expression and the state in pattern
recognition process thathas been reached after processing the
earlier inputs. The condition can refer to any of the attributes
of the schema of the stream or view that evaluates to a stream
onwhich the MATCH_RECOGNIZE clause is being applied.
A correlation variable in the PATTERN clause need not be
specified in the DEFINE clause: the default for such a corre-
lation variable is a predicate that is always true. Such a cor-
relation variable matches every event.

The PARTITION BY sub-clause specifies the stream
attributes by which a MATCH_RECOGNIZE clause should
partition its results. Without a PARTITION BY clause, all
stream attributes belong to the same partition. When a PAR-
TITION BY clause is present along with pattern matching,
the input stream is logically divided based on the attributes
mentioned in the partition list and pattern matching is done
within a partition.

The MEASURES sub-clause exports (e.g., makes avail-
able for inclusion in the SELECT clause) one or more
attribute values of events that successfully match the pattern
specified and also enables expressions to be specified on those
attribute values. This clause may be used to define expres-
sions over attributes of the events in the event stream that
match the conditions (correlation variables) in the DEFINE
clause and to alias these expressions so that they can suitably
be used in the SELECT clause of the main query of which this
MATCH_RECOGNIZE condition is a part. The attributes of
an event stream may be referred to either directly or via a
correlation variable.

The ALL. MATCHES sub-clause is optional and used to
specify how overlapping patterns are to be treated. The pres-
ence of the ALL MATCHES clause cause all the matched
pattern instances on receiving a particular input to be
reported. Omitting the ALL, MATCHES clause causes only
one pattern (the longest match) to be output. For example, if
the pattern to be matched is (AB*), then ALL. MATCHES will
cause all matched and overlapping patterns to be output such

10

15

20

25

30

35

40

45

50

55

60

12
as A, AB, ABB, ABBB. Omitting this clause will only output
the longest matched pattern, i.e., ABBB.

The INCLUDE TIMER EVENTS sub-clause is used in
conjunction with the DURATION clause (described below)
for non-event detection queries. Typically, in most pattern
match queries, a pattern match output is always triggered by
an input event on the input stream over which a pattern is
being matched. The exception is non-event detection queries
where there could be an output triggered by a timer expiry
event (as opposed to an explicit input event on the input
stream).

The PATTERN sub-clause specifies the pattern to be
matched as a regular expression over one or more correlation
variables. Incoming events must match these conditions in the
order given (from left to right). The regular expression may be
composed of correlation variables and pattern qualifiers such
as:

*: 0 or more times

+: 1 or more times

?: 0 or 1 time, etc.

In certain embodiments, the one-character pattern quantifiers
shown above are maximal or “greedy”; they will attempt to
match as many instances of the regular expression on which
they are applied as possible. The pattern quantifiers can also
be two characters, which are minimal or “reluctant”; they will
attempt to match as few instances of the regular expression on
which they are applied as possible. Examples of two character
quantifiers include without limitation:

*?: 0 or more times

+?: 1 or more times

??:0or1 time

As an example of pattern matching, consider the following
pattern:

PATTERN (AB*C)

This pattern clause means a pattern match will be recognized
when the following conditions are met by consecutive incom-
ing input events:

State 1: Exactly one event tuple matches the condition that
defines correlation variable A, followed by

State 2: Zero or more tuples that match the correlation vari-
able B, followed by

State 3: Exactly one tuple that matches correlation variable C.

The states State 1, State 2, and State 3 represent the various
states for the pattern (AB*C), with State 3 being the final state
for the pattern. When a pattern match is in a particular state
and can either remain in the same particular state or can
transition from the particular state to the next state due to the
next event, it implies that the binding can grow. A pattern is
considered matched if the binding is in the final state. While
in state 2, if a tuple or event arrives that matches both the
correlation variables B and C (since it satisfies the defining
conditions of both of them) then as the quantifier * for B is
greedy, that tuple will be considered to have matched B
instead of C. Accordingly, due to the greedy property B gets
preference over C and we match a greater number of B. Had
the pattern expression be A B*? C, one that uses a lazy or
reluctant quantifier over B, then a tuple matching both B and
C will be treated as matching C only. Thus C would get
preference over B and we will match fewer B.

In the gDelayedShipments query above, the pattern (A B)
is matched when:

State 1: Exactly one event tuple matches the condition that
defines correlation variable A, i.e., an event with an eventType
“placed”, followed by

State 2 (Final state): Exactly one tuple that matches correla-
tion variable B, i.e., an event with an eventType “in Process”.

US 9,098,587 B2

13

The states State 1 and State 2 represent the various possible
states for the pattern (AB), with State 2 being the final state for
the pattern.

The DURATION sub-clause is used when writing a query
involving non-event detection. Using this clause, a match is
reported only when the regular expression in the PATTERN
clause is matched completely and no other event or input
arrives until the duration specified in the DURATION clause
expires. The DURATION clause has an associated time
parameter that specifies the time duration for the DURATION
clause, for example,

DURATION <time_parameter>
The time_parameter is used to compute the time duration for
abinding or a pattern match candidate (or binding) started due
to an input event for a particular pattern. The time duration
indicates the length of time, from the time of arrival of the
event leading to the starting of the pattern match or binding,
that the binding can grow.

In the past, the time_parameter was always a constant or
fixed value. Certain embodiments of the present invention
enable the time_parameter specified in the DURATION
clause of a pattern query for non-events detection to be vari-
able. As described above, in previous implementations, users
could only have a constant or fixed value in the DURATION
clause. Certain embodiments of the present invention enable
the variable DURATION clause to be based upon a varying.

For example, the time_parameter of the DURATION
clause may be a function of one or more attributes of an input
event. For example, for the pattern (AB) in query qDelayed-
Shipments, the DURATION clause time_parameter is “esti-
matedTimeOfDelivery” and the duration period is set to the
value of the estimatedTimeOfDelivery attribute of the
received event that started a match. Since the value of this
attribute could be different for different events that start a
match, the value of the duration specified by the DURATION
clause can be different for different events. Accordingly, for
an underlying input stream having a schema comprising one
or more attributes, the time_parameter of the DURATION
clause may be based upon one or more of the event attributes.
For example, if an event “E” has an attribute “attr”, then an
example of the DURATION clause may be “DURATION
E.attr”. Here, the time_parameter is set to the value of E.attr,
which causes the duration period associated with a binding
resulting from receipt of event “E” to be set to the value of
attribute E.attr.

As another example, the time_parameter associated with
the DURATION clause may specify an expression (e.g., an
arithmetic expression) that is evaluated and the result of the
evaluation is the value given to resultant duration period for
the DURATION clause. In some embodiments, the expres-
sion may involve one or more attributes of an event. For
example, if an event “E” having attributes “attr__ 1, “attr_ 27,
examples of arithmetic expressions for the time_parameter
may include without limitation:

DURATION E.attr_1

DURATION E.attr__1+C, where C is some constant (e.g.,

E.attr_1+4)

DURATION E.attr__1+E.attr_ 2

DURATION 2* E.attr_ 2
Since the values of the attributes of the received events can be
different from one event to another, evaluation of the arith-
metic expression can result in different duration values for to
be associated with binding resulting from matches due to the
different events. Accordingly, embodiments of the present
invention enable both fixed/constant or variable values
for DURATION.

10

15

20

25

30

35

40

45

55

60

65

14

In the context of pattern matching, the DURATION clause
is evaluated at runtime when an event arrives on the input
event stream and starts a pattern match (i.e., creates a new
binding) (or multiple pattern matches). The expression asso-
ciated with the DURATION clause when such a binding starts
and the value obtained from evaluation of the expression is
identified as the duration for the binding. Accordingly, the
value of this expression is treated as the DURATION value
for a pattern match (if any) starting at that event.

Accordingly, a user can design a CQL query for non-event
detection and specify an expression (e.g., an arithmetic
expression) for the DURATION to suit the user’s needs. The
user is able to specify the duration of non-event detection as
an arithmetic expression possibly involving one or more
attributes of the base stream on which the pattern query is
being defined. The use of a variable value for duration is
useful when it is seen on an event-to-event basis i.e., for every
input event the duration could be different.

FIG. 2 depicts a simplified flowchart 200 depicting pro-
cessing performed upon receiving an event according to an
embodiment of the present invention. The processing
depicted in FIG. 2 may be implemented in software (e.g.,
code, instructions, program) executed by one or more pro-
cessing units (e.g., processors cores), hardware, or combina-
tions thereof. The software may be stored in memory (e.g., on
a memory device, on a non-transitory computer-readable
storage medium). The particular series of processing steps
depicted in FIG. 2 is not intended to be limiting. In certain
embodiments, the processing depicted in FIG. 2 may be per-
formed as part of the continuous query execution each time
that an input event is received via an event stream.

At 202, an input event is received via an event stream. The
event may have associated time information (e.g., a times-
tamp). In some instances, the time associated with an event
may represent the time when the event was received.

At 204, a determination is made ifthe event received in 202
starts a pattern match candidate (also referred to as a binding).
The event starts a binding if the event causes the first corre-
lation variable in the PATTERN to be matched. Such a match
implies that a new pattern match can start at this event. If the
event starts a new binding, then processing continues with
206 else processing continues with 214. Using the qDelayed-
Shipments query described above as an example, the pattern
is (AB), where is A is an event whose eventType is “placed”
and B is an event whose eventType is “in Process”. Accord-
ingly, if an event is received in 202 whose eventType is
“placed”, then it starts a pattern match since the event matches
the “A” part of the (AB) pattern (i.e., state 1 is satisfied). The
pattern match may also be referred to as a binding. The pattern
match or binding has the potential to grow further. Such a
binding that has the potential to grow further is referred to as
an active binding.

At 206, a duration is computed for the newly started bind-
ing. The duration for the binding is based upon the time_pa-
rameter specified in the DURATION clause in the query. The
time duration identifies a period of time after which the bind-
ing expires. All events comprising the pattern match happen
in the time frame specified by the duration and no other event
happens after the last event contributing to a match (as per the
PATTERN clause) has occurred and before the duration
expires/completes. Accordingly, in 206, the time_parameter
for the DURATION clause is evaluated and the result of the
evaluation is the value of the time period duration.

In some cases, as in previous implementations, the
time_parameter may be a fixed value. In such cases, the
duration is set to that fixed value.

US 9,098,587 B2

15

In certain embodiments, the time_parameter may specify a
variable value. For example, the time_parameter of a DURA-
TION clause may be based upon an attribute of an event. In
other scenarios, the time_parameter may be expressed as an
expression (e.g., an arithmetic expression) involving one or
more attributes of the event. As part 0f 206, the values of these
one or more attributes of the event received in 202 are deter-
mined and used to compute the duration. If an expression
(e.g., an arithmetic expression) involving one or more
attributes of the event has been specified, then in 206, the
values of the one or more attributes are determined and used
to evaluate the arithmetic expression. The duration is the
result of the arithmetic expression evaluation. For example,
for a DURATION clause,

DURATION c14+5, where c¢1 is an attribute of the event,
the value of attribute c1 of the event received in 202 is deter-
mined and the “c1+5” arithmetic expression evaluated using
the determined value. The result of the evaluation is the time
of duration for the new binding.

Since the values of the attributes can be different for dif-
ferent events that start a new binding, the evaluation of the
arithmetic expression may result in different time period val-
ues for different bindings. In this manner, the duration time
periods associated with different bindings started due to
events received via the same event stream and for the same
specified pattern may be different.

At208, an expiration time (or target time) is determined for
the newly started binding based upon the duration value deter-
mined in 206. The target time for the binding is obtained by
adding the duration value determined in 206 to the timestamp
of'the event received in 202 that started the binding. Accord-

ingly,

Target time(7';)=Time of Event(7)+Duration time
period(7p)

For example, if the event received in 202 has an associated
timestamp of 5 seconds and the duration value determined in
206 is 10 seconds, then the target time for the binding started
as a result of the event is 5+410=15 second mark. The 15
second mark marks the expiration time associated with the
binding.

At210, the target time determined in 208 is associated with
the newly started active binding. Processing then continues
with 214.

At 214, other events-related processing triggered by the
event received in 202 may be performed. For example, in one
embodiment, the processing depicted in FIG. 3 may be per-
formed as part of 214. After the processing in 214 is per-
formed, at 212, the event processing system waits for the next
event to arrive. The processing depicted in FIG. 2 may then be
repeated for the next event.

Once a new binding has been generated, as subsequent
events arrive, processing is performed by the event processing
system to determine whether the binding will grow or getto a
state where the binding cannot grow. Further, the events pro-
cessing system tracks the bindings and their associated target
or expiration times and performs appropriate processing
when the expiration time associated with a binding has passed
or expired (i.e., when the binding has expired).

FIG. 3 depicts a simplified flowchart 300 depicting pro-
cessing performed upon receiving an event with respect to
existing bindings according to an embodiment of the present
invention. The processing depicted in FIG. 3 may be imple-
mented in software (e.g., code, instructions, program)
executed by one or more processing units (e.g., processors
cores), hardware, or combinations thereof. The software may
be stored in memory (e.g., on a memory device, on a non-

10

15

20

25

30

35

40

45

50

55

60

65

16

transitory computer-readable storage medium). The particu-
lar series of processing steps depicted in FIG. 3 is not
intended to be limiting. In certain embodiments, the process-
ing depicted in FIG. 3 may be performed as part of the
continuous query execution each time that an input event is
received via an event stream.

FIG. 3 shows processing with respect to a single binding
that already exists. It should however be apparent that more
than one binding can exist, each created due to the start of a
pattern match based upon previously received events. Each of
these multiple bindings may be processed by the processing
depicted in FIG. 300 and described below.

At 302, an event is received via the event stream. Each
event has associated time information (e.g., timestamp). This
time information is used to determine whether that target time
(or expiration time) associated with a preexisting binding has
passed or expired, i.e., whether the binding has expired.

Accordingly, at 304, a check is made to see if the target or
expiration time associated with the preexisting binding is the
same as or less than the timestamp associated with the event
received in 302. If it is determined in 304 that the target or
expiration time associated with the preexisting binding is the
same as or less than the timestamp associated with the event
received in 302, then it indicates that the binding has expired
and processing continues with 314, else it indicates that the
binding has not expired and processing continues with 306.

At 306, a determination is made whether the active binding
can be grown based upon the event received in 302. As pre-
viously described, when a binding is in a particular state of the
various possible states for the pattern being matched and can
either remain in the same particular state or can transition
from the particular state to the next state as a result of the next
event, it implies that the binding can grow. For example, a
binding can be grown further if the input event received in 302
matches the next allowed variable as per the PATTERN regu-
lar expression, where the next allowed variable depends upon
the point which the current active binding represents in the
pattern match. Accordingly, in 306, a determination is made if
the preexisting binding can be grown as a result of the event
received in 302. If it is determined in 306 that the binding can
grow, then the binding is grown at 308, else the binding is
dropped from processing at 310. Processing then continues
with 312 where the event processing system waits for the next
event to arrive.

Using the gDelayedShipments query as an example, the
preexisting binding being processed may be in State 1 for
pattern (AB) due to the previous event having matched A. If
the event received in 302 matches B of the pattern (i.e., the
eventType of the event received in 302 is “in Process™), that
the binding can be and is grown from A to AB (the state of the
binding transitions from State 1 to State 2) in 308. However,
if the event received in 302 does not match B (i.e., the event-
Type of the event received in 302 is not “in Process™), then the
binding cannot grow and the binding is dropped from pro-
cessing per 310.

Referring back to 304, if it is determined in 304 that the
target or expiration time associated with the preexisting bind-
ing is the same as or less than the timestamp associated with
the event received in 302, then it indicates that the binding has
expired and processing continues with 314. At 314, a check is
made to see if the binding is in the final state of the pattern
matching states. If the binding is not in the final state, it
implies that the specified pattern has not been matched within
the duration associated with the binding and the binding is
dropped from processing per 310. Ifthe binding is in the final
state, it implies that the specified pattern has been matched
within the duration associated with the binding and, at 316, a

US 9,098,587 B2

17

non-event is reported. In one embodiment, the MEASURE
clause identifies that information to be output. The MEA-
SURE clause expression is thus evaluated and the informa-
tion then output. Processing then continues with 312 where
the system waits for the next event to arrive.

For example, for the (AB) pattern in qDelayedShipments,
a check is made in 314 to see if the binding is in State 2 (i.e.,
AB has been matched). If not, it implies that the AB pattern
has not been matched within the duration associated with the
binding and the binding is dropped from processing per 310.
If it is determined in 314 that the binding is in the final state
(i.e., AB has been matched), then it indicates that an event was
received indicating that an order has been placed (match to A)
followed by an event that indicates that the order is in process
(match to AB), but no following event has been received to
indicate that the order has been shipped within the time dura-
tion (i.e., the estimated TimeOfDelivery) associated with that
binding. Accordingly, a non-event is reported out in this case.

The processing depicted in FIGS. 2 and 3 and described
above assumes that the event received in 302 is an actual data
event. In some embodiments, the event received in 302 may
also be aheartbeat event, which is a special type of input event
that is used to convey just time progress information. A heart-
beat event does not have any value for the other attributes
associated with a regular data event. An event processing
system may be configured to send heartbeat events automati-
cally at periodic intervals, which can be configured by a user
of the system. Heartbeat events are then automatically gen-
erated and sent at the periodic intervals if no other actual event
is received within that period (i.e., the event stream is silent
for that time period). For example, for system-timestamped
sources (which are frequently used in event processing appli-
cations), the period after heartbeat events are automatically
sent can be specified when the stream/relation is silent for
some time period. An input channel may be configured to
send heartbeat tuples at configurable periods. It is to be noted
that not all systems need to have a heartbeat event sending
mechanism.

Since a heartbeat event does not contain any data attributes,
in FIG. 2, upon receiving a heartbeat event, processing would
continue with 214. Since the heartbeat event conveys passage
of time information, in FIG. 3, upon receiving a heartbeat
event, the processing in 304 would be performed to determine
if the binding has expired. If determined to be expired then the
processing would proceed with 314. If not expired, then pro-
cessing would continue with 312.

The results from non-event pattern matching processing
may be reported out in various ways. For example, when the
ALL MATCHES sub-clause is specified, all the matched
pattern instances are reported. Omitting the ALL. MATCHES
clause causes only one pattern (the longest match) to be
output. Accordingly, appropriate processing may be per-
formed in 316 when a non-event is reported. For example,
when the AL MATCHES CLAUSE is not present, only the
longest match may be identified from among multiple over-
lapping bindings and longest match reported out and not the
others. Additional customized methods for reporting out non-
events are described below.

The processing depicted in FIG. 3 and described above can
be used to handle constant or fixed period DURATION
clauses (from prior implementations) or variable duration
DURABLE clauses according to certain embodiments of the
present invention. Accordingly, a common generalized
method is provided for handling non-event detections.

FIG. 4 depicts modules and data structures that may be
used to implement non-event detection using variable dura-
tion according to an embodiment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

18

The modules depicted in FIG. 4 may be implemented in
software or hardware, or combinations thereof. Further, the
modules and data structures depicted in FIG. 4 are not
intended to be limiting. Alternative embodiments may have
more or less modules than those shown in FIG. 4 in various
arrangements and combinations.

Inthe embodiment depicted in FIG. 4, the modules include
a new binding generator 402, a bindings manager 404, a
duration and expiration time evaluator 406, and an output
module 410. An event 400 received by an event processing
system may be forwarded to new binding generator 402 and
bindings manager 404. In certain embodiments, new binding
generator 402 is configured to determine if the received event
starts a new binding or pattern match. If a new binding is
generated, new bindings generator 402 may use duration and
expiration time evaluator 406 to determine a duration for the
binding and an expiration time (target time) for the binding.
Duration and expiration time evaluator 406 may evaluate the
time_parameter associated with the DURATION clause to
determine a time of duration for the binding. Based upon the
computed duration and based upon the time associated with
event 400, evaluator 406 may determine a target or expiration
time for the newly generated binding. New binding generator
402 may then associate the target time received from evalu-
ator 406 with the newly generated binding. The newly gen-
erated binding and its associated target time may then be
forwarded to bindings manager 404. In one embodiment, new
binding generator 402 and duration and expiration time
evaluator 406, in combination, are configured to perform the
processing depicted in FIG. 2 and described above.

In certain embodiments, bindings manager 404 may be
configured to perform processing for managing the bindings
as events are received by the event processing system. For
example, in one embodiment, bindings manager 404 may be
configured to perform the processing depicted in FIG. 3 and
described above. When a non-event is detected, bindings
manager 404 may use the services of an output module 410 to
report out the non-event.

The modules depicted in FIG. 4 may use various data
structures 408 to facilitate the processing of events and detec-
tion of non-events. For example, new binding generator 402
and bindings manager 404 may use various data structures as
part of generating new bindings and performing bindings-
related processing, including detection of non-events,
according to an embodiment of the present invention.

The following query (query tkpattern_ql) represent
another CQL query for detecting non-events.

The use and result of a variable duration non-event pattern
matching is explained using the following simple non-limit-
ing example. Suppose that a CQL query is specified as fol-
lows:

create query tkpattern_ql as select T.c2, T.p1, T.p2 from tkpattern_S
MATCH_RECOGNIZE (

PARTITION BY c2

MEASURES A.cl aspl, B.cl as p2, A.c2 asc2

INCLUDE TIMER EVENTS

PATTERN(A B*) DURATION c1+4 DEFINE B as B.cl !=A.cl)as T

In this example, the DURATION is specified as “cl+4”,
where “c1” is an attribute of the input event stream. The input
stream is partitioned based upon the value of attribute c2 of
the input event. The pattern to be matched is (AB*) and
pattern matching is to be performed on a per partition basis.
This pattern is matched as long as two consecutive events in
a partition do not have the same value for attribute c1.

US 9,098,587 B2

19

Table A shown below shows a stream of events and the
output obtained from performing non-event pattern matching
using a variable duration according to an embodiment of the
present invention. This example is not intended to be limiting.

TABLE A
Input Data Output Obtained
Schema: (Timestamp, cl, ¢2) Schema: (Timestamp, T.c2, T.pl, T.p2)
(1,10, ORCL) (9, MSFT, 4, 2)
(1, 10, GOOG) (15, ORCL, 10, 15)
(1,4, MSFT) (15, GOOG, 10, 100)
(3, 6, MSFT)
(4,22, 0RCL)
(6, 444, ORCL)
(7,83, ORCL)
(7,2, MSFT)
(8, 80, GOOG)
(9, 88, ORCL)

(10, 11, MSFT)
(11,12, ORCL)
(11, 100, GOOG)
(11,22, ORCL)
(11,15, ORCL)
(16,13, ORCL)
(18,17, ORCL)

The output shown in Table C can be explained as follows:

(1) The event (1, 10, ORCL) marks the start of a candidate
pattern match (i.e., anew binding is generated) in the partition
corresponding to ¢2 value of “ORCL” since it matches A. At
this time the duration expression cl+4 is evaluated and the
duration is computed to be 14 seconds ((value of c1 of the
event starting the pattern match candidate)+4=10+4=14). The
expiry time for this newly generated active binding is com-
puted to be the 15 second mark (timestamp of event starting
the active binding+duration expression evaluation=1+
14=15). So if the binding starting with event (1, 10, ORCL)
continues to grow it will be output at its target time 15 second
mark. As can be seen from the flow of events in Table A, the
subsequent events in the “ORCL” partition keep matching to
B (i.e., B.cl 1=A.cl) and so the pattern match AB* grows till
the target time (15 second mark) is reached. When event (16,
13, ORCL) with timestamp 16 is received, it is determined
(per 304 in FIG. 3) that the time of the input event is greater
than the target time of 15 seconds associated with the binding
in the “ORCL” partition. A check is then made to see if the
binding is in the final state and it is determined that the
binding is indeed in the final state (i.e., the AB* pattern has
been matched). The detection of a non-event is thus reported.
Per the query specified output (Timestamp, T.c2, T.p1, T.p2),
the output is (15, ORCL, 10, 15).

(2) The event (1, 10, GOOG) marks the start of a candidate
pattern match (i.e., anew binding is generated) in the partition
corresponding to ¢2 value of “GOOG” since it matches A. At
this time the duration expression cl+4 is evaluated and the
duration is computed to be 14 seconds ((value of c1 of the
event starting the pattern match candidate)+4=10+4=14). The
expiry time for this newly generated active binding is com-
puted to be the 15 second mark (timestamp of event starting
the active binding+duration expression evaluation=1+
14=15). So if the binding starting with event (1, 10, GOOG)
continues to grow it will be output at its target time 15 second
mark. As can be seen from the flow of events in Table A, the
subsequent events in the “GOOG” partition keep matching to
B (i.e., B.cl 1=A.cl) and so the pattern match AB* grows till
the target time (15 second mark) is reached. When event (16,
13, ORCL) with timestamp 16 is received, it is determined
(per 304 in FIG. 3) that the time of the input event is greater

10

15

20

30

35

40

45

50

55

60

65

20

than the target time of 15 seconds associated with the binding
in the “GOOG” partition. A check is then made to see if the
binding is in the final state and it is determined that the
binding is indeed in the final state (i.e., the AB* pattern has
been matched). The detection of a non-event is thus reported.
Per the query specified output (Timestamp, T.c2, T.p1, T.p2),
the output is (15, GOOG, 10, 100).

(3) The event (1, 4, MSFT) marks the start of a candidate
pattern match (i.e., a new binding is generated) in the partition
corresponding to c2 value of “MSFT” since it matches A. At
this time the duration expression cl+4 is evaluated and the
duration is computed to be 8 seconds ((value of'c1 of the event
starting the pattern match candidate)+4=4+4=8). The expiry
time for this newly generated active binding is computed to be
the 9 second mark (timestamp of event starting the active
binding+duration expression evaluation=1+8=9). So if the
binding starting with event (1, 4, MSFT) continues to grow it
will be output at its target time 9 second mark. As can be seen
from the flow of events in Table A, the subsequent events in
the “MSFT” partition keep matching to B (i.e., B.cl 1=A.c1)
and so the pattern match AB* grows till the target time (9
second mark) is reached. When event (9, 88, ORCL) with
timestamp 9 is received, it is determined (per 304 in FIG. 3)
that the time of the input event is equal to the 9 seconds target
time associated with the binding in the “MSFT” partition. A
check is then made to see if the binding is in the final state and
it is determined that the binding is indeed in the final state
(i.e., the AB* pattern has been matched). The detection of a
non-event is thus reported. Per the query specified output
(Timestamp, T.c2, T.p1, T.p2), the output is (9, MSFT, 4, 2).

In one embodiment, the DDIL for pattern clause
(MATCH_RECOGNIZE) construct does not need to change.
At the parser level, the DURATION sub-clause can now map
to any of the following:

duration clause

: RW_DURATION time_spec

IRW_DURATION RW_MULTIPLES
time_spec

IRW_DURATION non_const_arith_expr

IRW_DURATION non_const_arith_expr time_unit

Where the last two productions in the rule correspond to
variable duration support. In one embodiment, the default
time unit is SECONDS.

The results from non-event pattern matching processing
may be reported out in various ways. In certain embodiments,
special processing may be performed to ensure that the match
outputs are not output out of order. For example, the following
two scenarios are examples where variable duration non-
event detection may cause match outputs to be reported out-
of-order:

1. No partitions, ALL. MATCHES

2. Partitions, SKIP PAST LAST ROW
Output-related processing may be performed for each of the
above scenarios to ensure that the results are output in order.
In-order matching may be used by some event processing
applications and not others. It is to be understood that the
in-order related processing described below is not needed or
essential to the embodiments of the present invention as
recited in the claims.

(1) No Partitions, ALL, MATCHES

As described above, when the ALL MATCHES clause is
specified in a query, all the matched pattern instances are
reported, including overlapping patterns, not just the longest
match. Due to the variable nature of the durations associated
with individual bindings, it is possible to have the situation
described diagrammatically in FIG. 5. As shown in FIG. 5,
there are two currently active bindings that have completed

RW_OF

US 9,098,587 B2

21

their respective duration time. In the scenario shown in FIG.
5, active binding 2 (the second active binding) started later
than active binding 1 (the first active binding) (i.e., the times-
tamp associated with the event that gave rise to the second
active binding is later than the timestamp associated with the
event that gave rise to the first active binding) but the second
binding has completed its duration earlier than the first bind-
ing that started earlier. This is because the duration deter-
mined for the second binding was smaller than the duration
associated with the first binding. This can happen only with
embodiments that use variable duration values.

Accordingly, in the situation in FIG. 5, a binding that
started later has completed its duration earlier than the one
that started earlier. Given such a situation, in certain embodi-
ments, the desired output is in the order of the target or
expiration times associated with the bindings. The problem
here however is that if the bindings are processed in the
normal order, i.e., the order in which the bindings were
started, then this would cause the first match (i.e., the first
active binding) to be output earlier than the second match
(i.e., the second output binding), even though the second
output binding has a lower associated target time.

In one embodiment, to ensure in-order output of the bind-
ings for the ALL. MATCHES case, a data structure (e.g., a
treeset) is used to keep all the active bindings sorted in
increasing order of target time. When such a data structure is
iterated over, the binding with an earlier or lower target time
(e.g., the second binding in FIG. 5) will be processed before
a binding with a later or higher target time (e.g., the first
binding in FIG. 5). This allows bindings to be output in
correct order of the target times.

In certain embodiments, in order to perform in-order
reporting of matches, the concept of an “unsure” binding is
introduced. An unsure binding is a binding which cannot
grow further and has reached final state and its associated
target time has passed. Itis labeled as “unsure” to indicate that
even though the match has completed whether or not the
binding is to be output is unsure. The target time associated
with an unsure binding is referred as the matchedT time (a
matchedT is associated with an unsure binding whereas a
target time is for an active binding, but the value is the same).
Once an active binding’s target time has expired and the
binding has reached the final state of the pattern (i.e., the
regular expression specified by PATTERN has been
matched), the binding is moved to a list of unsure bindings. A
list may be also maintained of all active bindings whose
durations have not expired (i.e., whose target times have not
passed).

In one embodiment, the processing for the “no partitions
ALL MATCHES” case may be implemented using the fol-
lowing data structures:

(1) Active binding TreeSet: A TreeSet is maintained storing
active bindings in ascending target time order per partition. If
a “partition by” clause is not specified then the entire input is
treated as one partition. This is a TreeSet (to ensure ascending
target time order) to avoid the out-of-order matches issue.

(2) Active item: An active item refers to one active binding
and that active binding has a reference back to the active item.
This is needed only if partition by is specified.

(3) Activeltems: A TreeSet of active items is maintained
only if partition by is specified. This TreeSet maintains the
active items in ascending target time order and is partition
independent. This allows active bindings across all partitions
which have completed their target time when a new input
arrives to be quickly identified.

20

25

30

35

40

45

55

60

65

22

(4) commonUnsurelist: When an active binding com-
pletes its target time, it gets moved to this list of unsure
bindings. These are output later.

In one embodiment, the processing performed by the EPS
for handling a no partitions, ALL,L MATCHES scenario to
ensure in-order output may comprise the following six steps
as follows (the processing shown below is not intended to
limits the scope of embodiments of the present invention):

1. Receive the input tuple.

2. If (“partition by” clause is specified) then, for every
active item in Activeltems (independent of whether it belongs
to the current input’s partition or not) having target time
<=current input’s timestamp, do the following:

(a) Remove the active item from the Activeltems data
structure and also remove the referred active binding
from the active bindings TreeSet of that partition.

(b) The referred active binding has completed the PAT-
TERN clause match and also the Duration specified
(since target time <=current time of input event (ts)). So
move it to the commonUnsureList.

(c) If the partition is empty (i.e., no active bindings left)
remove it.

3. If (partition by clause is not specified) OR (it is specified

and the current tuple is not heartbeat tuple) then

For every active binding in current tuple’s partition do the
following:

(a) If the current tuple is heartbeat tuple and the active

binding’s target time is greater than the heartbeat time go

to step 6.

(b) Remove the active binding from the TreeSet and from
Activeltems (if “partition by’ has been specified)

(c) Process the active binding to see if it can be grown
further.

As indicated above, a binding can be grown further ifthe
current input tuple matches the next allowed variable
as per the PATTERN regular expression. The next
allowed variable depends upon the point which the
current active binding represents in the pattern match.
For example, if PATTERN(ABC) is the specification
and A and B have already been matched (i.e., binding
represents the partial match AB) then the next allowed
variable is C. So the match can be grown only if the
current input tuple matches C’s DEFINE clause con-
dition.

If the binding can be grown further then
Insert the new (grown binding) into the data structures

(Activeltems (if maintained) and active bindings
tree set of that partition)

Else
If the binding cannot be grown further then it gets

dropped as it is already removed from the data
structures.

4. If the current input is not a heartbeat tuple then:

(a) Try to see if the current input tuple matches the first
variable in the PATTERN, i.e. if a match can start at this
tuple.

(b) If yes, then
a. Evaluate the duration clause expression using the

attribute values of the current tuple and compute the
duration value.

b. Add it to the current tuple timestamp and set the result
as the target time for this new active binding.

c. Insert this binding into the active bindings TreeSet for
this partition. Also construct a corresponding
Activeltem and insert it in Activeltems data-structure
(if maintained).

US 9,098,587 B2

23

5. If partition by is specified then remove the current par-
tition if it is empty.

6. Output the completed matches collected in the commo-
nUnsurelist after evaluating MEASURE clause expressions
on them. During iteration the binding is removed from the
commonUnsurelist, so at the end of this step commonUn-
sureList will be empty.

(2) Partitions, SKIP PAST LAST ROW

When the ALLL MATCHES clause is not specified, the
pattern matching outputs the longest overlapping pattern
match binding. There can be two types of overlapping pattern
matches:

(a) Total overlapping—Consider a first binding for a specified
pattern that started at 2000 seconds and has a target time of
8000 seconds and a second binding that started for the same
pattern at 3000 seconds and has a target time of 8000 seconds.
Upon expiration, if both the bindings match the specified
pattern (i.e. are in the final state) then the longer first binding
is preferred and output instead of the second shorter overlap-
ping binding.

(b) Partial overlapping—Consider a first binding for a speci-
fied pattern that started at 2000 seconds and has a target time
01’8000 seconds and a second binding that started for the same
pattern at 5000 seconds and has a target time of 9000 seconds.
Upon expiration, if both the bindings match the specified
pattern (i.e. are in the final state) then the first binding with the
earlier start time is preferred and output instead of the second
binding.

Due to the variability of durations computed for different
bindings, it is possible to have the situation described dia-
grammatically in FIG. 6. Here there are bindings in two
partitions P1 and P2. As shown, there is an unsure (B2) and an
active binding (B1) in Partition 1. The unsure binding B2 in
Partition 1 is due to it having started after the active binding
B1 and it having finished its duration prior to the active
binding B1 because of a smaller value of duration than the
other active binding B1. This unsure binding is not to be
output since the currently active binding B1 in P1 can become
unsure and then it will represent the longest match.

Further, as shown in FIG. 6, the second partition P2 has a
binding B3 that became unsure at the current instant. How-
ever, this binding cannot be output because, if later the active
binding B1 in Partition 1 does not complete (due to any
reason) and is dropped, then the unsure binding B2 in parti-
tion P1 needs to be output first. Since that has matchedTs
lesser than the matchedT's of unsure binding B3 in Partition 2,
this could will result in out-of-order reporting of matches.

In one embodiment, an unsureltem is maintained for every
binding in unsurelist and using a Treeset of such unsureltems
enables one to quickly obtain the minimum matchedTs
among them. This is then used to decide whether a binding
should be reported or not.

In one embodiment, the data structures described above for

processing the ALLL MATCHES case are used with some
changes. For unsure bindings, a commonUnsurelist is not
maintained but instead a partition-specific unsure binding list
is maintained. Further, if a “partition by” clause is specified
then the following additional data-structures are maintained:
(1) A priority queue called ‘readyToOutputBindings’ is main-
tained which keeps the unsure bindings that are ‘ready’ for
output sorted in ascending order of ‘matchedTs’.
(2) Anunsureltem is maintained (similar to activeltem) which
maps to an unsure binding. All these unsure items (indepen-
dent of partition) are kept in a TreeSet called unsureltems and
are sorted by matchedTs. This data-structure helps to quickly
identify the minimum ‘matchedTs’ among all the unsure
bindings across all partitions.

20

30

40

45

24

In one embodiment, the processing performed by the EPS
for handling a partitions, SKIP PAST LAST ROWS scenario
to ensure in-order output may be as follows (the processing
shown below is not intended to limits the scope of embodi-
ments of the present invention):

1. Receive the input tuple and mark the partition to which
this tuple belongs as ‘current partition’. If partition by is not
specified then entire input is one (and ‘current’) partition.

2. If input tuple is heartbeat and partition by is specified, go
to step 4.

3. Perform doCommonProcessing()

4. If partition by is specified, then do doNonEventProcess-
ing(')

5. Output the completed matches:

If partition by is NOT specified then iterate through the
unsure bindings list and output after evaluating MEASURE
clause expressions.

Else

Iterate through the readyToOutputBindings priority queue
(sorted on matchedTs) and output all those matches for which
matchedTs is less than minTs (minimum matchedTs among
all the currently unsure bindings across partitions—needed to
avoid the out-of-order match reporting issue) computed at
step 5(b) in doCommonProcessing(). Evaluate MEASURE
clause expressions prior to output.

In certain embodiments, the processing performed in the
doCommonProcesssing() function called above in step 3 may
be as follows:

doCommonProcessing()

NOTE: The ‘current partition’ could be different from the
recent input’s partition if this is called via doNonEvent-
Processing.

1. For all active bindings of the ‘current partition’ (main-
tained in target time order), do the following:

(a) if (active binding’s target time>current input time)
AND
(current input tuple is heartbeat OR we are processing

some partition other than the recent input’s parti-
tion) go to step 2.

This is because if a partition is being processed other
than the current tuple’s partition or the input is a
heartbeat then only those active bindings which have
completed their target time are of interest.

(b) Remove the active binding and a corresponding
active item (if maintained) from those data-structures.

©If

1. An unsure binding has not been found yet OR

2. An unsure binding is found but the current active
binding has started earlier than the unsure binding
(unsureBind) so far.

‘unsureBind’ contains a reference to the unsure bind-
ing which has the smallest startindex among the
possibly many bindings which can become unsure
at a certain input. Since bindings with variable
durations which have started at different times can
end at the same time (can have same target time)
and the longest among those is of interest (the one
which started the earliest).

Then
Process the binding. Processing would mean trying

to see if the binding can be grown further with
the current input like in the ALL. MATCHES
case. If it can be grown, put the newly grown
active binding into the maintained data-struc-
tures. If the binding becomes unsure then set a
Boolean ‘foundMatch’ to true.

Else
The binding gets dropped.

US 9,098,587 B2

25
2. If a match is found at step 1.(c) then
(a) Add the ‘unsureBind’ (longest match) to the
unsureList and also add unsureltem if that data-struc-
ture is being maintained.

26

6. If current partition has become empty (no active bind-
ings left) then delete it.
In certain embodiments, the processing performed in the

doNonEventProcesssing() function called above in step 4

(b) If the recent input’s partition is being processed and 5 (partitions, SKIP PAST LAST ROW case) may be as follows:

input is not a heartbeat then will have to later try
whether the recent input matches the starting variable
of the pattern. This is tracked by setting the Boolean
‘applySOtrans’ to true.

(c) If we have quit at step 1.(a) then iterate through the
remaining active bindings of the ‘current partition’
and delete all those which have started later than the
unsureBind. (Since no overlapping matches allowed
here those which started later than the unsureBind
should be deleted).

(d) Also delete all the unsure bindings of the ‘current
partition” which have started later than “‘unsureBind’
and hence are smaller than ‘unsureBind’.

3. All the active bindings left now in the ‘current partition’
would have started earlier than ‘unsureBind’. Get the
first binding’s startIndex and set it as ‘minActivelndex’.
If no binding is left then set ‘minActivelndex’ to Long-
MAX _VALUE. This ‘minActivelndex’ is used in
deciding whether the ‘unsureBind’ can be output or not.

4. if(applySOtrans is set in step 2.(b) OR
(If current partition is recent input’s partition AND cur-

rent input is not a heartbeat AND if we have not found

a match at step 1.(c)) then

Try to match the current input tuple to the first variable
in the PATTERN clause to see if a match can start at
this tuple.
If'yes, then

Evaluate the duration clause expression using the
attribute values of the current tuple and compute
the duration value.

Add it to the current tuple timestamp and set the result
as the target time for this new active binding.

Insert this binding into the active bindings TreeSet for
this partition. Also construct a corresponding
Activeltem and insert it in Activeltems data-struc-
ture (if maintained)

5. If (partition by is specified) then InitReportBindings:
This step is used to ensure that we don’t report out-of-

order matches across partitions.
(a) For every unsure binding in the ‘current partition’
If the binding has started earlier than the ‘minAc-
tivelndex’ computed in step (3) then remove it from
unsure list and move it to ‘readyToOutputBind-
ings’ queue. It means there is no active binding in
this partition which has started earlier than this
unsure binding and so this binding is ready ToOut-
put.

Else

There is some active binding which has started earlier
than this unsure binding and hence can be the long-
est match if it completes in future so this unsure
binding is still not ready to be output.

(b) Set the minTs to be the minimum matched T's among
all the unsure bindings across all partitions. So if a
binding is ready to be output but there is some unsure
binding which has matchedTs <this binding’s
matchedTs we cannot output it. This is handled by
‘minTs’ and unsureltem is used to quickly compute
the minTs.

10

doNonEventProcessing()
For all Active Items which have target time <=current
input time
(Essentially all those active bindings across partitions
which have crossed their target time and hence will
become unsure) do the following:
(a) Set the active item’s (binding’s) partition as ‘current
partition’.
(b) doCommonProcessing()
As discussed above, the DURATION for a binding in non-

event matching processing may be based upon one or more
attributes of the event that started the binding. In certain
embodiments, the attributes upon which the DURATION
value is based may be part of the input event stream schema

20 itself. However, in some embodiments, such an attribute(s)

25

may not be part of the received input stream. In one such
embodiment, the one or more attributes to be used for setting
the DURATION value may be added to the event stream by
deriving a new stream from the original stream where the one
or more attributes upon which the duration calculation is
based are part of the schema of the derived event stream.

FIG. 7 is a simplified block diagram illustrating compo-

nents of a system environment 700 that may be used in accor-
dance with an embodiment of the present invention. As

30 shown, system environment 700 includes one or more client

computing devices 702, 704, 706, 708, which are configured
to operate a client application such as a web browser, propri-
etary client (e.g., Oracle Forms), or the like. In various
embodiments, client computing devices 702, 704, 706, and
708 may interact with an event processing system 712.

Client computing devices 702, 704, 706, 708 may be gen-

eral purpose personal computers (including, by way of
example, personal computers and/or laptop computers run-
ning various versions of Microsoft Windows and/or Apple

40 Macintosh operating systems), cell phones or PDAs (running

45

software such as Microsoft Windows Mobile and being Inter-
net, e-mail, SMS, Blackberry, or other communication pro-
tocol enabled), and/or workstation computers running any of
a variety of commercially-available UNIX or UNIX-like
operating systems (including without limitation the variety of
GNU/Linux operating systems). Alternatively, client com-
puting devices 702, 704, 706, and 708 may be any other
electronic device, such as a thin-client computer, Internet-
enabled gaming system, and/or personal messaging device,

50 capable of communicating over a network (e.g., network 710

described below). Although exemplary system environment
700 is shown with four client computing devices, any number
of client computing devices may be supported. Other devices
such as devices with sensors, etc. may interact with system
712.

A network 710 may facilitate communications and

exchange of data between clients 702, 704, 706, and 708 and
event processing system 712. Network 710 may be any type
of network familiar to those skilled in the art that can support

60 data communications using any of a variety of commercially-

o
o

available protocols, including without limitation TCP/IP,
SNA, IPX, AppleTalk, and the like. Merely by way of
example, network 710 can be a local area network (LAN)
such as an Ethernet network, a Token-Ring network and/or
the like; a wide-area network; a virtual network, including
without limitation a virtual private network (VPN); the Inter-
net; an intranet; an extranet; a public switched telephone

US 9,098,587 B2

27

network (PSTN); an infra-red network; a wireless network
(e.g., anetwork operating under any of the IEEE 802.1X suite
of protocols, the Bluetooth protocol known in the art, and/or
any other wireless protocol); and/or any combination of these
and/or other networks.

Event processing system 712 may comprise one or more
computers and/or servers which may be general purpose
computers, specialized server computers (including, by way
of example, PC servers, UNIX servers, mid-range servers,
mainframe computers, rack-mounted servers, etc.), server
farms, server clusters, or any other appropriate arrangement
and/or combination. In various embodiments, system 712
may be adapted to run one or more services or software
applications described in the foregoing disclosure.

System 712 may run an operating system including any of
those discussed above, as well as any commercially available
server operating system. System 712 may also run any of a
variety of additional server applications and/or mid-tier appli-
cations, including HTTP servers, FTP servers, CGI servers,
Java servers, database servers, and the like. Exemplary data-
base servers include without limitation those commercially
available from Oracle, Microsoft, Sybase, IBM and the like.

System environment 700 may also include one or more
databases 714 and 716. Databases 714 and 716 may reside in
a variety of locations. By way of example, one or more of
databases 714 and 716 may reside on a storage medium local
to (and/or resident in) system 712. Alternatively, databases
714 and 716 may be remote from system 712, and in com-
munication with system 712 via a network-based or dedicated
connection. In one set of embodiments, databases 714 and
716 may reside in a storage-area network (SAN) familiar to
those skilled in the art. Similarly, any necessary files for
performing the functions attributed to system 712 may be
stored locally on system 712 and/or remotely, as appropriate.
In one set of embodiments, databases 714 and 716 may
include relational databases, such as Oracle 11g, which are
adapted to store, update, and retrieve data in response to
SQL-formatted commands.

FIG. 8 is a simplified block diagram of a computer system
800 that may be used in accordance with certain embodi-
ments of the present invention. For example, system 800 may
be used to implement event processing system 100 depicted
in FIG. 1. Computer system 800 is shown comprising various
components that may be electrically coupled via a bus 824.
The components may include one or more processing units
802, an input subsystem 804, an output subsystem 806, stor-
age devices 808, a computer-readable storage media reader
812 connected to a computer-readable storage medium 810, a
communication subsystem 814, a processing acceleration
subsystem 816, and working memory 818.

Bus subsystem 824 provides a mechanism for letting the
various components and subsystems of computer system 800
communicate with each other as intended. Although bus sub-
system 824 is shown schematically as a single bus, alternative
embodiments of the bus subsystem may utilize multiple bus-
ses.

Input subsystem 804 may include one or more input
devices such as a mouse, a keyboard, a pointing device, a
touchpad, etc. In general, input subsystem 804 may include
any device or mechanism for inputting information to com-
puter system 800.

Output subsystem 806 may include one or more output
devices for outputting information from computer system
800. Examples of output devices include without limitation a
display device, a printer, a projection device, etc. In general,
output subsystem 806 may include any device or mechanism
for outputting information from computer system 800.

10

20

25

30

35

40

45

50

55

60

65

28

Processing unit(s) 802 can include one or more processors,
one or more cores of processors, combinations thereof, and
the like. In some embodiments, processing unit(s) 802 can
include a general purpose primary processor as well as one or
more special purpose co-processors such as graphics proces-
sors, digital signal processors, or the like. In some embodi-
ments, some or all processing units 802 can be implemented
using customized circuits, such as application specific inte-
grated circuits (ASICs) or field programmable gate arrays
(FPGAs). In some embodiments, such integrated circuits
execute instructions that are stored on the circuit itself. In
other embodiments, processing unit(s) 802 can execute
instructions stored in working memory 818 or on storage
devices 808. In various embodiments, processing units 802
can execute a variety of programs or code instructions and can
maintain multiple concurrently executing programs or pro-
cesses. At any given time, some or all of the program code to
be executed can be resident in system working memory 818,
storage devices 808, and/or on computer-readable storage
media 810. Through suitable programming, processing units
802 can provide various functionalities described above for
performing event stream-related processing. In some
embodiments, computer system 800 may also include a pro-
cessing acceleration unit 816, which can include a digital
signal processor (DSP), a special-purpose processor, and/or
the like.

Storage device(s) 808 may include memory devices such
as disk drives, optical storage devices, and solid-state storage
devices such as a random access memory (RAM) and/or a
read-only memory (ROM), which can be programmable,
flash-updateable and/or the like. Software (programs, code
modules, instructions), which when executed by processing
unit(s) 802 to provide the functionality described above, may
be stored on storage devices 808. Storage devices 808 may
also provide a repository for storing data used in accordance
with embodiments of the present invention.

Computer-readable storage media reader 812 can further
be connected to a computer-readable storage medium 810,
together (and, optionally, in combination with storage
device(s) 808) comprehensively representing remote, local,
fixed, and/or removable memory storage devices plus storage
media for temporarily and/or more permanently containing
computer-readable information.

Communications subsystem 814 may permit data to be
exchanged with network 710 and/or any other computers
described above with respect to system environment 700.
Communication subsystem 814 serves as an interface for
receiving data from and transmitting data to other systems
from computer system 800. The communication may be pro-
vided using wired or wireless protocols. For example, com-
munication subsystem 814 may enable computer 800 to con-
nect to a client device via the Internet. Communication
subsystem 814 may comprise a modem, a network card (wire-
less or wired), an infra-red communication device, a GPS
receiver, etc.

Working memory subsystem 818 may include a number of
memories including a main random access memory (RAM)
for storage of instructions and data during program execution
and a read only memory (ROM) in which fixed instructions
are stored. Software elements such as an operating system
820 and/or other code 822, such as an application program
(which may be a client application, Web browser, mid-tier
application, RDBMS, etc.), may be stored in working
memory 818. In an exemplary embodiment, working
memory 818 may include executable code and associated

US 9,098,587 B2

29

data structures (such as caches) used for processing events
and enabling variable duration windows processing as
described above.

It should be appreciated that alternative embodiments of
computer system 800 may have more or less components with
numerous variations from that described above. For example,
customized hardware might also be used and/or particular
elements might be implemented in hardware, software (in-
cluding portable software, such as applets), or both. Further,
connection to other computing devices such as network input/
output devices may be employed.

Although specific embodiments of the invention have been
described, various modifications, alterations, alternative con-
structions, and equivalents are also encompassed within the
scope of the invention. Embodiments of the present invention
are not restricted to operation within certain specific data
processing environments, but are free to operate within a
plurality of data processing environments. Additionally,
although embodiments of the present invention have been
described using a particular series of transactions and steps, it
should be apparent to those skilled in the art that the scope of
the present invention is not limited to the described series of
transactions and steps.

Further, while embodiments of the present invention have
been described using a particular combination of hardware
and software, it should be recognized that other combinations
of hardware and software are also within the scope of the
present invention. Embodiments of the present invention may
be implemented only in hardware, or only in software, or
using combinations thereof. The various processes described
herein can be implemented on the same processor or different
processors in any combination. Accordingly, where compo-
nents or modules are described as being configured to per-
form certain operations, such configuration can be accom-
plished, e.g., by designing electronic circuits to perform the
operation, by programming programmable electronic circuits
(such as microprocessors) to perform the operation, or any
combination thereof. Processes can communicate using a
variety of techniques including but not limited to conven-
tional techniques for interprocess communication, and differ-
ent pairs of processes may use different techniques, or the
same pair of processes may use different techniques at differ-
ent times.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that additions, subtractions, dele-
tions, and other modifications and changes may be made
thereunto without departing from the broader spirit and scope
as set forth in the claims. Thus, although specific invention
embodiments have been described, these are not intended to
be limiting. Various modifications and equivalents are within
the scope of the following claims.

What is claimed is:

1. A method comprising:

determining, by a computing device, that a first event
received by the computing device via an event stream
causes a first pattern match candidate to be started for a
pattern;

computing, by the computing device, a first duration for the
first pattern match candidate;

determining, by the computing device, a first expiration
time for the first pattern match candidate based upon a
first time associated with the first event and the first
duration;

associating, by the computing device, the first expiration
time with the first pattern match candidate;

40

45

55

65

30

determining, by the computing device, that a second event
received via the event stream causes a second pattern
match candidate to be started for the pattern;
computing, by the computing device, a second duration for
the second pattern match candidate, the second duration
being different from the first duration;
determining, by the computing device, a second expiration
time for the second pattern match candidate based upon
a second time associated with the second event and the
second duration; and
associating, by the computing device, the second expira-
tion time with the second pattern match candidate.
2. The method of claim 1 wherein:
the first event and the second event comprise an attribute;
computing the first duration comprises:
determining a first value of the attribute of the first event;
and
using the first value to compute the first duration; and
computing the second duration comprises:
determining a second value of the attribute of the second
event, the second value being different from the first
value; and
using the second value to compute the second duration.
3. The method of claim 1 wherein:
the first event and the second event comprise an attribute;
computing the first duration comprises:
determining a first value of the attribute of the first event;
and
evaluating an expression using the first value to compute
the first duration; and
computing the second duration comprises:
determining a second value of the attribute of the second
event, the second value being different from the first
value; and
evaluating the expression using the second value to com-
pute the second duration.
4. The method of claim 1 further comprising:
determining, after the first time duration for the first event
has passed, whether the first pattern match candidate has
matched the pattern; and
upon determining that the first pattern match candidate has
matched the pattern, outputting information indicative
of a non-event occurrence corresponding to the first
pattern match candidate.
5. The method of claim 1, further comprising:
determining, at or after the first expiration time associated
with the first pattern match candidate, whether the first
pattern match candidate has matched the pattern; and
upon determining that the first pattern match candidate has
matched the pattern, outputting information indicative
of a non-event occurrence corresponding to the first
pattern match candidate.
6. A computing device comprising:
a memory; and
a set of processing units, wherein one or more processing
units from the set of processing units are adapted to:
determine that a first event received by the computing
device via an event stream causes a first pattern match
candidate to be started for a pattern;
compute a first duration for the first pattern match can-
didate;
determine a first expiration time for the first pattern
match candidate based upon a first time associated
with the first event and the first duration;
associate the first expiration time with the first pattern
match candidate;

US 9,098,587 B2

31

determine that a second event received via the event
stream causes a second pattern match candidate to be
started for the pattern;

compute a second duration for the second pattern match
candidate, the second duration being different from
the first duration;

determine a second expiration time for the second pat-
tern match candidate based upon a second time asso-
ciated with the second event and the second duration;
and

associate the second expiration time with the second
pattern match candidate.

7. The computing device of claim 6 wherein the one or
more processing units from the set of processing units are
adapted to:

determine a first value of an attribute of the first event; and

use the first value to compute the first duration;

determine a second value of the attribute of the second
event, the second value being different from the first
value; and

use the second value to compute the second duration.

8. The computing device of claim 6 wherein the one or
more processing units from the set of processing units are
adapted to:

determine a first value of an attribute of the first event; and

evaluate an expression using the first value to compute the

first duration;

determine a second value of the attribute of the second

event, the second value being different from the first
value; and

evaluating the expression using the second value to com-

pute the second duration.

9. The computing device of claim 6 wherein the one or
more processing units from the set of processing units are
further adapted to:

determine, after the first time duration for the first event has

passed, whether the first pattern match candidate has
matched the pattern; and

upon determining that the first pattern match candidate has

matched the pattern, output information indicative of a
non-event occurrence corresponding to the first pattern
match candidate.
10. The computing device of claim 6 wherein the one or
more processing units from the set of processing units are
adapted to:
determine the first expiration time by adding the first dura-
tion to the first time associated with the first event; and

determine the second expiration time by adding the second
duration to the second time associated with the second
event.

11. The computing device of claim 6 wherein the one or
more processing units from the set of processing units are
further adapted to: determine, at or after the first expiration
time associated with the first pattern match candidate,
whether the first pattern match candidate has matched the
pattern; and upon determining that the first pattern match
candidate has matched the pattern, output information indica-
tive of a non-event occurrence corresponding to the first pat-
tern match candidate.

12. A non-transitory computer-readable memory storing a
plurality of instructions executable by one or more processing
units, the plurality of instructions comprising:

instructions that cause at least one processing unit from the

one or more processing units to determine that a first
event received via an event stream causes a first pattern
match candidate to be started for a pattern;

10

15

20

25

30

35

40

45

50

55

60

65

32

instructions that cause at least one processing unit from the
one or more processing units to compute a first duration
for the first pattern match candidate;
instructions that cause at least one processing unit from the
one or more processing units to determine a first expi-
ration time for the first pattern match candidate based
upon a first time associated with the first event and the
first duration;
instructions that cause at least one processing unit from the
one or more processing units to associate the first expi-
ration time with the first pattern match candidate;
instructions that cause at least one processing unit from the
one or more processing units to determine that a second
event received via the event stream causes a second
pattern match candidate to be started for the pattern;
instructions that cause at least one processing unit from the
one or more processing units to compute a second dura-
tion for the second pattern match candidate, the second
duration being different from the first duration;
instructions that cause at least one processing unit from the
one or more processing units to determine a second
expiration time for the second pattern match candidate
based upon a second time associated with the second
event and the second duration; and
instructions that cause at least one processing unit from the
one or more processing units to associate the second
expiration time with the second pattern match candidate.
13. The non-transitory computer-readable memory of
claim 12 wherein:
the instructions that cause at least one processing unit from
the one or more processing units to compute the first
duration comprise:
instructions that cause at least one processing unit from
the one or more processing units to determine a first
value of an attribute of the first event; and
instructions that cause at least one processing unit from
the one or more processing units to use the first value
to compute the first duration; and
the instructions that cause at least one processing unit from
the one or more processing units to compute the second
duration comprise:
instructions that cause at least one processing unit from
the one or more processing units to determine a sec-
ond value of the attribute of the second event, the
second value being different from the first value; and
instructions that cause at least one processing unit from
the one or more processing units to use the second
value to compute the second duration.
14. The non-transitory computer-readable memory of
claim 12 wherein:
the instructions that cause at least one processing unit from
the one or more processing units to compute the first
duration comprise:
instructions that cause at least one processing unit from
the one or more processing units to determine a first
value of an attribute of the first event; and
instructions that cause at least one processing unit from
the one or more processing units to evaluate an
expression using the first value to compute the first
duration; and
instructions that cause at least one processing unit from the
one or more processing units to compute the second
duration comprise:
instructions that cause at least one processing unit from
the one or more processing units to determine a sec-
ond value of the attribute of the second event, the
second value being different from the first value; and

US 9,098,587 B2

33

instructions that cause at least one processing unit from
the one or more processing units to evaluate the
expression using the second value to compute the
second duration.

15. The non-transitory computer-readable memory of
claim 12 wherein the plurality of instructions further com-
prises:

instructions that cause at least one processing unit from the

one or more processing units to determine, after the first
time duration for the first event has passed, whether the
first pattern match candidate has matched the pattern;
and

instructions that cause at least one processing unit from the

one or more processing units to, upon determining that
the first pattern match candidate has matched the pattern,
output information indicative of a non-event occurrence
corresponding to the first pattern match candidate.

16. The non-transitory computer-readable memory of
claim 12 wherein:

the instructions that cause at least one processing unit from

the one or more processing units to determine the first
expiration time comprise instructions that cause at least
one processing unit from the one or more processing

10

20

34

units to determine the first expiration time by adding the
first duration to the first time associated with the first
event; and

the instructions that cause at least one processing unit from

the one or more processing units to determine the second
expiration time comprise instructions that cause at least
one processing unit from the one or more processing
units to determine the second expiration time by adding
the second duration to the second time associated with
the second event.

17. The non-transitory computer-readable memory of
claim 12 wherein the plurality of instructions further com-
prises:

instructions that cause at least one processing unit from the

one or more processing units to determine, at or after the
first expiration time associated with the first pattern
match candidate, whether the first pattern match candi-
date has matched the pattern; and

instructions that cause at least one processing unit from the

one or more processing units to, upon determining that
the first pattern match candidate has matched the pattern,
output information indicative of a non-event occurrence
corresponding to the first pattern match candidate.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,098,587 B2 Page 1 of2
APPLICATION NO. : 13/839288

DATED : August 4, 2015

INVENTOR(S) : Deshmukh et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the title page,

On page 5, column 1, under Other Publications, line 52, delete “Serverver” and insert -- Server,
ver. --, therefor.

On page 5, column 1, under Other Publications, line 69, delete “(pri nter).aspx,” and insert
-- (printer).aspx, --, therefor.

On page 8, column 1, under Other Publications, line 53, delete “Retrievd” and insert -- Retrieved --,
therefor.

In the specification,

99 99

In column 9, line 62, delete “““in Process”,” and insert -- “inProcess”, --, therefor.

9999

In column 9, line 64, delete “““in Process™ and insert -- “inProcess™ --, therefor.

9999

In column 10, line 31, delete “““in Process™ and insert -- “inProcess” --, therefor.

9999

In column 10, lines 32-33, delete ““in Process’™ and insert -- “inProcess” --, therefor.

In column 12, line 67, delete “““in Process™.”” and insert -- “inProcess”. --, therefor.
In column 16, line 49, delete “““in Process™),” and insert -- “inProcess™), --, therefor.

In column 16, line 53, delete “““in Process™),” and insert -- “inProcess™), --, therefor.

In column 22, line 32, after “specified)” insert -- . --.

Signed and Sealed this
Twenty-first Day of June, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Pat. No. 9,098,587 B2

In column 24, line 11, after “doCommonProcessing()” insert -- . --,

In column 24, lines 12-13, after “doNonEventProcessing()” insert -- . --.

In column 24, line 26, delete “Processsing() and insert -- Processing() --, therefor.
In column 25, line 43, after “(if maintained)” insert -- . --.

In column 26, line 4, delete “Processsing()” and insert -- Processing() --, therefor.

In column 26, line 14, after “doCommonProcessing()” insert -- . --,

